Amano Yuki, Sachdeva Rohan, Gittins Daniel, Anantharaman Karthik, Lei Shufei, Valentin-Alvarado Luis E, Diamond Spencer, Beppu Hikari, Iwatsuki Teruki, Mochizuki Akihito, Miyakawa Kazuya, Ishii Eiichi, Murakami Hiroaki, Jaffe Alexander L, Castelle Cindy, Lavy Adi, Suzuki Yohey, Banfield Jillian F
Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, Ibaraki, 4-33 Muramatsu Tokai, Japan.
Horonobe Underground Research Center, Japan Atomic Energy Agency, 432-2, Hokushin, Horonobe, Hokkaido, Japan.
Environ Microbiome. 2024 Dec 18;19(1):105. doi: 10.1186/s40793-024-00649-3.
Underground research laboratories (URLs) provide a window on the deep biosphere and enable investigation of potential microbial impacts on nuclear waste, CO and H stored in the subsurface. We carried out the first multi-year study of groundwater microbiomes sampled from defined intervals between 140 and 400 m below the surface of the Horonobe and Mizunami URLs, Japan.
We reconstructed draft genomes for > 90% of all organisms detected over a four year period. The Horonobe and Mizunami microbiomes are dissimilar, likely because the Mizunami URL is hosted in granitic rock and the Horonobe URL in sedimentary rock. Despite this, hydrogen metabolism, rubisco-based CO fixation, reduction of nitrogen compounds and sulfate reduction are well represented functions in microbiomes from both URLs, although methane metabolism is more prevalent at the organic- and CO-rich Horonobe URL. High fluid flow zones and proximity to subsurface tunnels select for candidate phyla radiation bacteria in the Mizunami URL. We detected near-identical genotypes for approximately one third of all genomically defined organisms at multiple depths within the Horonobe URL. This cannot be explained by inactivity, as in situ growth was detected for some bacteria, albeit at slow rates. Given the current low hydraulic conductivity and groundwater compositional heterogeneity, ongoing inter-site strain dispersal seems unlikely. Alternatively, the Horonobe URL microbiome homogeneity may be explained by higher groundwater mobility during the last glacial period. Genotypically-defined species closely related to those detected in the URLs were identified in three other subsurface environments in the USA. Thus, dispersal rates between widely separated underground sites may be fast enough relative to mutation rates to have precluded substantial divergence in species composition. Species overlaps between subsurface locations on different continents constrain expectations regarding the scale of global subsurface biodiversity.
Our analyses reveal microbiome stability in the sedimentary rocks and surprising microbial community compositional and genotypic overlap over sites separated by hundreds of meters of rock, potentially explained by dispersal via slow groundwater flow or during a prior hydrological regime. Overall, microbiome and geochemical stability over the study period has important implications for underground storage applications.
地下研究实验室(URLs)为深入了解深层生物圈提供了一个窗口,并有助于研究微生物对储存于地下的核废料、一氧化碳和氢气的潜在影响。我们对日本幌延和水俣URLs地下140至400米特定区间采集的地下水微生物群落进行了首次多年研究。
我们重建了四年期间检测到的所有生物中超过90%的生物的基因组草图。幌延和水俣的微生物群落不同,可能是因为水俣URL位于花岗岩中,而幌延URL位于沉积岩中。尽管如此,氢代谢、基于核酮糖二磷酸羧化酶的一氧化碳固定、氮化合物还原和硫酸盐还原在两个URLs的微生物群落中都是重要的功能,尽管甲烷代谢在富含有机物和一氧化碳的幌延URL中更为普遍。高流体流动区域以及靠近地下隧道的区域选择了水俣URL中的候选门放射菌。在幌延URL内的多个深度,我们检测到约三分之一的基因组定义生物具有近乎相同的基因型。这无法用不活动来解释,因为检测到一些细菌有原位生长,尽管速率很慢。鉴于目前低水力传导率和地下水成分的异质性,不同地点之间正在进行的菌株扩散似乎不太可能。另外,幌延URL微生物群落的同质性可能是由于末次冰期期间较高的地下水流动性。在美国的其他三个地下环境中,鉴定出了与在URLs中检测到的物种基因型密切相关的物种。因此,相对于突变率而言,广泛分离的地下地点之间的扩散速率可能足够快,从而阻止了物种组成的实质性分化。不同大陆地下地点之间的物种重叠限制了对全球地下生物多样性规模的预期。
我们的分析揭示了沉积岩中微生物群落的稳定性,以及在被数百米岩石隔开的地点之间令人惊讶的微生物群落组成和基因型重叠,这可能是通过缓慢的地下水流或在先前的水文条件下扩散造成的。总体而言,研究期间微生物群落和地球化学的稳定性对地下储存应用具有重要意义。