Suppr超能文献

基于对接的BRD4(BD1)抑制剂虚拟筛选:对接方法、评分函数及计算机模拟分子性质评估

Docking‑based virtual screening of BRD4 (BD1) inhibitors: assessment of docking methods, scoring functions and in silico molecular properties.

作者信息

Dong Junmin, Hao Xiaohua

机构信息

Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.

出版信息

BMC Chem. 2024 Dec 18;18(1):247. doi: 10.1186/s13065-024-01362-5.

Abstract

To enhance the accuracy of virtual screening for bromodomain-containing protein 4 (BRD4) inhibitors, two docking protocols and seven scoring functions were compared. A total of 73 crystal structures of BRD4 (BD1) complexes were selected for analysis. Firstly, docking was carried out using both the LibDock and CDOCKER methods. The CDOCKER protocol was shown to be more effective based on the root mean square deviation (RMSD) values (in Å) between the docking positions and the co-crystal structures, achieving a docking accuracy rate of 86.3%. Then, among the various scoring functions (LigScore1, LigScore2, PLP1, PLP2, PMF, PMF04 and Ludi3), PMF showed the highest correlation with inhibition constants (r = 0.614), while Ludi3 scored lowest (r = 0.266). Finally, using ligand descriptors from PubChem, a strong correlation (r > 0.5) with inhibition constants for heavy atom count was found. Based on these comprehensive evaluations, the PMF scoring function emerged as the best tool for docking-based virtual screening of potential BRD4 (BD1) inhibitors. And the correlation between molecular properties and BRD4 (BD1) ligands also provided information for future design strategies.

摘要

为提高对含溴结构域蛋白4(BRD4)抑制剂虚拟筛选的准确性,对两种对接方案和七种评分函数进行了比较。共选择了73个BRD4(BD1)复合物的晶体结构进行分析。首先,使用LibDock和CDOCKER方法进行对接。基于对接位置与共晶体结构之间的均方根偏差(RMSD,单位为Å)值,CDOCKER方案显示出更高的有效性,对接准确率达到86.3%。然后,在各种评分函数(LigScore1、LigScore2、PLP1、PLP2、PMF、PMF04和Ludi3)中,PMF与抑制常数的相关性最高(r = 0.614),而Ludi3得分最低(r = 0.266)。最后,利用来自PubChem的配体描述符,发现重原子数与抑制常数之间存在强相关性(r > 0.5)。基于这些综合评估,PMF评分函数成为基于对接的潜在BRD4(BD1)抑制剂虚拟筛选的最佳工具。分子性质与BRD4(BD1)配体之间的相关性也为未来的设计策略提供了信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99fc/11657568/d2c6d3c97e48/13065_2024_1362_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验