Izadifar Mohammad, Massumi Mohammad, Prentice Kacey J, Oussenko Tatiana, Li Biao, Elbaz Judith, Puri Mira, Wheeler Michael B, Nagy Andras
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
Departments of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
Stem Cell Res Ther. 2024 Dec 18;15(1):486. doi: 10.1186/s13287-024-04059-7.
Pluripotent cell-derived islet replacement therapy offers promise for treating Type 1 diabetes (T1D), but concerns about uncontrolled cell proliferation and tumorigenicity present significant safety challenges. To address the safety concern, this study aims to establish a proof-of-concept for a glucose-responsive, insulin-secreting cell line integrated with a built-in FailSafe kill-switch.
We generated β cell-induced progenitor-like cells (βiPLCs) from primary mouse pancreatic β cells through interrupted reprogramming. Then, we transcriptionally linked our FailSafe (FS) kill-switch, HSV-thymidine kinase (TK), to Cdk1 gene using a CRISPR/Cas9 knock-in strategy, resulting in a FailSafe βiPLC line, designated as FSβiPLCs. Subsequently we evaluated and confirmed the functionality of the drug-inducible kill-switch in FSβiPLCs at different ganciclovir (GCV) concentrations using our PDMS-based transcapillary microfluidic system. Finally, we assessed the functionality of FSβiPLCs by characterizing the dynamics of insulin secretion in response to changes in glucose concentration using our microfluidic perfusion glucose-stimulated insulin secretion (GSIS) assay-on- chip.
The βiPLCs exhibited Ins1, Pdx1 and Nkx6.1 expression, and glucose responsive insulin secretion, the essential properties of pancreatic beta cells. The βiPLCs were amenable to genome editing which allowed for the insertion of the kill-switch into the 3'UTR of Cdk1, confirmed by PCR genotyping. Our transcapillary microfluidic system confirmed the functionality of the drug-inducible kill-switch in FSβiPLCs, showing an effective cell ablation of dividing cells from a heterogeneous cell population at different ganciclovir (GCV) concentrations. The Ki67 expression assessment further confirmed that slow- or non-dividing cells in the FSβiPLC population were resistant to GCV. Our perfusion glucose-stimulated insulin secretion (GSIS) assay-on-chip revealed that the resistant non-dividing FSβiPLCs exhibited higher levels of insulin secretion and glucose responsiveness compared to their proliferating counterparts.
This study establishes a proof-of-concept for the integration of a FailSafe kill-switch system into a glucose-responsive, insulin-secreting cell line to address the safety concerns in stem cell-derived cell replacement treatment for T1D. The microfluidic systems provided valuable insights into the functionality and safety of these engineered cells, demonstrating the potential of the kill-switch to reduce the risk of tumorigenicity in pluripotent cell-derived insulin-secreting cells.
多能细胞衍生的胰岛替代疗法有望治疗1型糖尿病(T1D),但对细胞不受控制的增殖和致瘤性的担忧带来了重大安全挑战。为解决安全问题,本研究旨在为整合了内置故障安全杀伤开关的葡萄糖反应性胰岛素分泌细胞系建立概念验证。
我们通过中断重编程从小鼠原代胰腺β细胞生成了β细胞诱导的祖细胞样细胞(βiPLCs)。然后,我们使用CRISPR/Cas9敲入策略将我们的故障安全(FS)杀伤开关单纯疱疹病毒胸苷激酶(TK)转录连接到Cdk1基因,从而产生了一个故障安全βiPLC系,命名为FSβiPLCs。随后,我们使用基于聚二甲基硅氧烷(PDMS)的跨毛细血管微流控系统,在不同更昔洛韦(GCV)浓度下评估并确认了FSβiPLCs中药物诱导型杀伤开关的功能。最后,我们使用微流控灌注葡萄糖刺激胰岛素分泌(GSIS)芯片检测法,通过表征胰岛素分泌对葡萄糖浓度变化的动态反应,评估了FSβiPLCs的功能。
βiPLCs表现出Ins1、Pdx1和Nkx6.1的表达以及葡萄糖反应性胰岛素分泌,这是胰腺β细胞的基本特性。βiPLCs适合进行基因组编辑,通过PCR基因分型证实可以将杀伤开关插入Cdk1的3'非翻译区(3'UTR)。我们的跨毛细血管微流控系统证实了FSβiPLCs中药物诱导型杀伤开关的功能,显示在不同更昔洛韦(GCV)浓度下,能有效消除异质细胞群体中的分裂细胞。Ki67表达评估进一步证实,FSβiPLC群体中的缓慢或非分裂细胞对GCV具有抗性。我们的灌注葡萄糖刺激胰岛素分泌(GSIS)芯片检测法显示,与增殖的对应细胞相比,抗性非分裂FSβiPLCs表现出更高水平的胰岛素分泌和葡萄糖反应性。
本研究为将故障安全杀伤开关系统整合到葡萄糖反应性胰岛素分泌细胞系中建立了概念验证,以解决T1D干细胞衍生细胞替代治疗中的安全问题。微流控系统为这些工程细胞的功能和安全性提供了有价值的见解,证明了杀伤开关在降低多能细胞衍生胰岛素分泌细胞致瘤风险方面的潜力。