Rao Shashank V, Maganas Dimitrios, Sivalingam Kantharuban, Atanasov Mihail, Neese Frank
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany.
Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Akad. Georgi Bontchev Street 11, Sofia 1113, Bulgaria.
Inorg Chem. 2024 Dec 30;63(52):24672-24684. doi: 10.1021/acs.inorgchem.4c03893. Epub 2024 Dec 18.
Ligand field theory (LFT) is one of the cornerstones of coordination chemistry since it provides a conceptual framework in which a great many properties of d- and f-element compounds can be discussed. While LFT serves as a powerful qualitative guide, it is not a tool for quantitative predictions on individual compounds since it incorporates semiempirical parameters that must be fitted to experiment. One way to connect the realms of first-principles electronic structure theory that has emerged as particularly powerful over the past decade is the ab initio ligand field theory (AILFT). The original formulation of this method involved the extraction of LFT parameters by fitting the ligand field Hamiltonian to a complete active space self-consistent field (CASSCF) Hamiltonian. The extraction was shown to be unique provided that the active space consists of 5/7 metal d/f-based molecular orbitals (MOs). Subsequent improvements have involved incorporating dynamical correlation using second-order N-electron valence state perturbation theory (NEVPT2) or second-order dynamical correlation dressed complete active space (DCDCAS). However, the limitation of past approaches is that the method requires a minimal space of 5/7 metal d- or f-based molecular orbitals. This leads to a number of limitations: (1) neglect of radial or semicore correlation would arise from the effect of a second d-shell or an sp-shell in the active space, (2) a more balanced description of metal-ligand bond covalency is lacking because the bonding ligand-based counterparts of the metal d/f orbitals are not in the active space. This usually leads to an exaggerated ionicity of the M-L bonds. In this work, we present an extended active space AILFT (esAILFT) that circumvents these limitations and is, in principle, applicable to arbitrary active spaces, as long as these contain the 5/7 metal d/f-based MOs as a subset. esAILFT was implemented in a development version of the ORCA software package. In order to help with the application of the new method, various criteria for active space extension were explored for 3d, 4d, and 5d transition-metal ions with varying charge. An interpretation of the trends in the Racah B parameter for these ions is also presented as a demonstration of the capabilities of esAILFT.
配体场理论(LFT)是配位化学的基石之一,因为它提供了一个概念框架,在这个框架中可以讨论许多d族和f族元素化合物的性质。虽然LFT是一个强大的定性指南,但它不是用于对单个化合物进行定量预测的工具,因为它包含必须根据实验进行拟合的半经验参数。在过去十年中出现的一种特别强大的连接第一性原理电子结构理论领域的方法是从头算配体场理论(AILFT)。该方法的原始公式涉及通过将配体场哈密顿量拟合到完全活性空间自洽场(CASSCF)哈密顿量来提取LFT参数。结果表明,只要活性空间由5/7个基于金属d/f的分子轨道(MO)组成,这种提取就是唯一的。随后的改进包括使用二阶N电子价态微扰理论(NEVPT2)或二阶动态相关修饰完全活性空间(DCDCAS)纳入动态相关。然而,过去方法的局限性在于该方法需要至少5/7个基于金属d或f的分子轨道空间。这导致了许多限制:(1)活性空间中第二个d壳层或sp壳层的影响会导致径向或半芯相关的忽略,(2)由于基于金属d/f轨道的键合配体对应物不在活性空间中,缺乏对金属 - 配体键共价性的更平衡描述。这通常会导致M - L键的离子性被夸大。在这项工作中,我们提出了一种扩展活性空间AILFT(esAILFT),它规避了这些限制,并且原则上适用于任意活性空间,只要这些活性空间包含作为子集的5/7个基于金属d/f的MO。esAILFT在ORCA软件包的开发版本中实现。为了帮助新方法的应用,针对不同电荷的3d、4d和5d过渡金属离子探索了各种活性空间扩展标准。还给出了这些离子的拉卡B参数趋势的解释,作为esAILFT能力的展示。