Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
J Chem Phys. 2019 Mar 14;150(10):104104. doi: 10.1063/1.5085203.
We report an extension of the recently proposed 2nd order dynamic correlation dressed complete active space method [S. Pathak et al., J. Chem. Phys. 147, 234109 (2017)] to incorporate spin-dependent relativistic effects into the Hamiltonian. The result is an effective Hamiltonian that contains the effects of static correlation, dynamic correlation, and relativistic effects on an equal footing. All contributions necessary for the description of magnetic phenomena and electron paramagnetic resonance (EPR) spectroscopy, namely, spin-orbit coupling, magnetic hyperfine coupling, Zeeman interaction, and direct electronic spin-spin coupling, are incorporated. We also suggest a novel analysis of g-matrices and A-matrices based on the singular value decomposition, which can provide not only the magnitude but also the sign of the principal components and allows for a transparent decomposition into different physical contributions. The new method was tested for excitation energies of first-row transition metal ions as well as D-tensors and g-shifts of first-row transition metal complexes using minimal active spaces. It was observed that state-mixing effects are usually small in these cases and that the results are comparable to nondegenerate N-electron valence state perturbation theory (NEVPT2) in conjunction with quasi-degenerate perturbation theory (QDPT). Results on EPR parameters of pseudo-square-planar Cu(ii) complexes show that state-mixing with a ligand-to-metal-charge-transfer configuration greatly improves results compared with NEVPT2/QDPT but also demonstrate that future modifications of the 0th order Hamiltonian or more elaborate electron correlation treatments will be necessary in order to achieve better agreement with the experiment.
我们报告了最近提出的二阶动态相关 dressed 完全活性空间方法的扩展[ S. Pathak 等人,J. Chem. Phys. 147, 234109 (2017)],以将自旋相关相对论效应纳入哈密顿量。结果是一个有效的哈密顿量,其中包含静态相关、动态相关和相对论效应对等的影响。描述磁现象和电子顺磁共振(EPR)光谱所需的所有贡献,即自旋轨道耦合、磁超精细耦合、塞曼相互作用和直接电子自旋-自旋耦合,都被包含在内。我们还提出了一种基于奇异值分解的 g 矩阵和 A 矩阵的新分析方法,该方法不仅可以提供主分量的大小,还可以提供其符号,并允许对不同的物理贡献进行透明分解。新方法使用最小活性空间测试了第一过渡金属离子的激发能以及第一过渡金属配合物的 D 张量和 g 位移。结果表明,在这些情况下,态混合效应通常很小,并且结果与非简并 N 电子价态微扰理论(NEVPT2)结合准简并微扰理论(QDPT)相当。拟正方形平面 Cu(ii)配合物的 EPR 参数的结果表明,与 NEVPT2/QDPT 相比,与配体到金属电荷转移构型的态混合大大改善了结果,但也表明为了更好地与实验结果相吻合,未来需要对 0 阶哈密顿量进行修改或更精细的电子相关处理。