Aguilar Mauricio R, Jover Jesus, Ruiz Eliseo, Aragonès Albert C, Artés Vivancos Juan M
Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Diagonal 645, Barcelona, 08028, Spain.
Institut de Química Teòrica i Computacional (IQTC), Diagonal 645, Barcelona, 08028, Spain.
Small. 2025 Feb;21(5):e2408459. doi: 10.1002/smll.202408459. Epub 2024 Dec 18.
Nucleic acids have emerged as new materials with promising applications in nanotechnology, molecular electronics, and biosensing, but their electronic properties, especially at the single-molecule level, are largely underexplored. The Z-form is an exotic left-handed helical oligonucleotide conformation that may be involved in critical biological processes such as the regulation of gene expression and epigenetic processes. In this work, the electrical conductance of individual Guanine Cytosine (GC)-rich DNA:RNA molecules is measured in physiological buffer and 2,2,2-Trifluoroethanol (TFE) solvent, corresponding to the natural (right-handed helix) A-form typical in DNA:RNA hybrids and the (left-handed) Z-form conformations, respectively. Single-molecule conductance measurements are performed using the Scanning Tunneling Microscopy (STM)-assisted break-junction method in the so-called "blinking" approach, recording the spontaneous formation of single-biomolecule junctions and performing statistical analysis of the signals. Circular Dichroism (CD) experiments and ab initio calculations are also done to rationalize the measured molecular conductivity with a simple structural and electronic model. These results show that the electrical conductivity of the Z-form is one order of magnitude lower than that of the more compact A-form. The longer molecular length and higher energy for the Highest Occupied Molecular Orbital (HOMO) of the Z-form account for the differences in single-molecule conductance observed experimentally.
核酸已成为在纳米技术、分子电子学和生物传感等领域具有广阔应用前景的新型材料,但其电子特性,尤其是在单分子水平上,在很大程度上仍未得到充分探索。Z型是一种奇特的左手螺旋寡核苷酸构象,可能参与关键的生物学过程,如基因表达调控和表观遗传过程。在这项工作中,分别在生理缓冲液和2,2,2-三氟乙醇(TFE)溶剂中测量了富含鸟嘌呤胞嘧啶(GC)的单个DNA:RNA分子的电导,这两种溶剂分别对应于DNA:RNA杂交体中典型的天然(右手螺旋)A构象和(左手)Z构象。使用扫描隧道显微镜(STM)辅助的断接结方法,采用所谓的“闪烁”方法进行单分子电导测量,记录单生物分子结的自发形成,并对信号进行统计分析。还进行了圆二色性(CD)实验和从头算计算,以用简单的结构和电子模型来解释测得的分子电导率。这些结果表明,Z型的电导率比更紧凑的A型低一个数量级。Z型更长的分子长度和最高占据分子轨道(HOMO)的更高能量解释了实验观察到的单分子电导差异。