Jacobsen Nadine S J, Kristanto Daniel, Welp Suong, Inceler Yusuf Cosku, Debener Stefan
Neuropsychology Lab, Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
Psychological Methods and Statistics Division, Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
Psychophysiology. 2025 Jan;62(1):e14743. doi: 10.1111/psyp.14743.
Preprocessing is necessary to extract meaningful results from electroencephalography (EEG) data. With many possible preprocessing choices, their impact on outcomes is fundamental. While previous studies have explored the effects of preprocessing on stationary EEG data, this research delves into mobile EEG, where complex processing is necessary to address motion artifacts. Specifically, we describe the preprocessing choices studies reported for analyzing the P3 event-related potential (ERP) during walking and standing. A systematic review of 258 studies of the P3 during walking, identified 27 studies meeting the inclusion criteria. Two independent coders extracted preprocessing choices reported in each study. Analysis of preprocessing choices revealed commonalities and differences, such as the widespread use of offline filters but limited application of line noise correction (3 of 27 studies). Notably, 59% of studies involved manual processing steps, and 56% omitted reporting critical parameters for at least one step. All studies employed unique preprocessing strategies. These findings align with stationary EEG preprocessing results, emphasizing the necessity for standardized reporting in mobile EEG research. We implemented an interactive visualization tool (Shiny app) to aid the exploration of the preprocessing landscape. The app allows users to structure the literature regarding different processing steps, enter planned processing methods, and compare them with the literature. The app could be utilized to examine how these choices impact P3 results and understand the robustness of various processing options. We hope to increase awareness regarding the potential influence of preprocessing decisions and advocate for comprehensive reporting standards to foster reproducibility in mobile EEG research.
预处理对于从脑电图(EEG)数据中提取有意义的结果是必要的。由于存在许多可能的预处理选择,它们对结果的影响至关重要。虽然先前的研究已经探讨了预处理对静态EEG数据的影响,但本研究深入研究了移动EEG,在这种情况下需要复杂的处理来解决运动伪影。具体而言,我们描述了为分析行走和站立过程中的P3事件相关电位(ERP)而报道的预处理选择研究。对258项关于行走过程中P3的研究进行的系统综述,确定了27项符合纳入标准的研究。两名独立的编码员提取了每项研究中报道的预处理选择。对预处理选择的分析揭示了共性和差异,例如离线滤波器的广泛使用但线噪声校正的应用有限(27项研究中有3项)。值得注意的是,59%的研究涉及手动处理步骤,56%的研究至少有一个步骤省略了关键参数的报告。所有研究都采用了独特的预处理策略。这些发现与静态EEG预处理结果一致,强调了移动EEG研究中标准化报告的必要性。我们实现了一个交互式可视化工具(Shiny应用程序)来帮助探索预处理情况。该应用程序允许用户构建关于不同处理步骤的文献,输入计划的处理方法,并与文献进行比较。该应用程序可用于检查这些选择如何影响P3结果,并了解各种处理选项的稳健性。我们希望提高对预处理决策潜在影响的认识,并倡导全面的报告标准,以促进移动EEG研究的可重复性。