Shi Guokai, Xie Junpeng, Li Zhibin, Sun Peng, Yin Ying, Pan Likun, Hui Kwun Nam, Mai Wenjie, Li Jinliang
Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, College of Physics & Optoelectronic Engineering, Department of Physics, Jinan University Guangzhou 510632 China
Advanced Energy Storage Materials and Technology Research Center, Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology Jiangmen 529199 Guangdong Province China.
Chem Sci. 2024 Dec 12;16(3):1344-1352. doi: 10.1039/d4sc07483a. eCollection 2025 Jan 15.
Due to the minimal electrochemical oxidation-reduction potential, the potassium (K) metal anode has emerged as a focal in K-ion batteries. However, the reactivity of the K metal anode leads to significant side reactions, particularly gas evolution. Mitigating gas generation from K metal anodes has been a persistent challenge in the field. In this study, we propose a dual protective layer design through pre-treatment of the K metal anode, employing a BiO modification layer alongside a stable solid electrolyte interface (SEI) formed during the initial charge-discharge cycle, which significantly suppresses gas evolution. Furthermore, we observe that the BiO modification layer enhances K nucleation due to its strong potassiophilicity when incorporated into the substrate material. The resultant SEI, consisting of dual inorganic layers of Bi-F and K-F formed through the BiO modification, effectively mitigates side reactions and gas generation while inhibiting dendrite growth. Utilizing a Cu@BO@K host, we achieve a nucleation overpotential as low as 40 mV, with a stability of 1900 h in a Cu@BO@K‖Cu@BO@K cell and a high average Coulombic efficiency of 99.2% in a Cu@BO@K‖Cu cell at 0.5 mA cm/0.5 mA h cm. Additionally, Cu@BO@K‖PTCDA also presents a high reversible capacity of 114 mA g at 100 mA g after 200 cycles. We believe that this work presents a viable pathway for mitigating side reactions in K metal anodes.
由于钾(K)金属阳极的电化学氧化还原电位极低,它已成为钾离子电池的一个研究焦点。然而,K金属阳极的反应活性会导致显著的副反应,尤其是气体析出。减轻K金属阳极产生的气体一直是该领域持续存在的挑战。在本研究中,我们通过对K金属阳极进行预处理提出了一种双保护层设计,采用BiO改性层以及在初次充放电循环期间形成的稳定固体电解质界面(SEI),这显著抑制了气体析出。此外,我们观察到BiO改性层由于其在掺入基体材料时具有很强的亲钾性而增强了K的成核。通过BiO改性形成的由Bi-F和K-F双无机层组成的所得SEI,有效减轻了副反应和气体产生,同时抑制了枝晶生长。利用Cu@BO@K主体,我们在Cu@BO@K‖Cu@BO@K电池中实现了低至40 mV的成核过电位,稳定性为1900小时,在0.5 mA cm/0.5 mA h cm的Cu@BO@K‖Cu电池中平均库仑效率高达99.2%。此外,Cu@BO@K‖PTCDA在100 mA g下循环200次后也具有114 mA g的高可逆容量。我们相信这项工作为减轻K金属阳极中的副反应提供了一条可行的途径。