Suppr超能文献

重构亥姆霍兹平面可实现用于长寿命和高安全性钠离子电池的稳健富氟界面。

Reconstructing Helmholtz Plane Enables Robust F-Rich Interface for Long-Life and High-Safe Sodium-Ion Batteries.

作者信息

Chen Long, Chen Ming, Meng Qingfei, Zhang Jing, Feng Guang, Ai Xinping, Cao Yuliang, Chen Zhongxue

机构信息

Key Laboratory of Hydraulic Machinery Transients, Ministry of Education School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, P. R. China.

School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan, 430072, China.

出版信息

Angew Chem Int Ed Engl. 2024 Sep 16;63(38):e202407717. doi: 10.1002/anie.202407717. Epub 2024 Aug 20.

Abstract

Hard carbon (HC) is the most commonly used anode material in sodium-ion batteries. However, the solid-electrolyte-interface (SEI) layer formed in carbonate ester-based electrolytes has an imperceptible dissolution tendency and a sluggish Na diffusion kinetics, resulting in an unsatisfactory performance of HC anode. Given that electrode/electrolyte interface property is highly dependent on the configuration of Helmholtz plane, we filtrated proper solvents by PFBE (PF anion binding energy) and CAE (carbon absorption energy) and disclosed the function of chosen TFEP to reconstruct the Helmholtz plane and regulate the SEI film on HC anode. Benefiting from the preferential adsorption tendency on HC surface and strong anion-dragging interaction of TFEP, a robust and thin anion-derived F-rich SEI film is established, which greatly enhances the mechanical stability and the Na ion diffusion kinetics of the electrode/electrolyte interface. The rationally designed TFEP-based electrolyte endows Na||HC half-cell and 2.8 Ah HC||NaFe(PO)PO pouch cell with excellent rate capability, long cycle life, high safety and low-temperature adaptability. It is believed that this insightful recognition of tuning interface properties will pave a new avenue in the design of compatible electrolyte for low-cost, long-life, and high-safe sodium-ion batteries.

摘要

硬碳(HC)是钠离子电池中最常用的负极材料。然而,在碳酸酯基电解质中形成的固体电解质界面(SEI)层具有难以察觉的溶解趋势和缓慢的钠扩散动力学,导致HC负极性能不尽人意。鉴于电极/电解质界面性质高度依赖于亥姆霍兹平面的结构,我们通过PFBE(PF阴离子结合能)和CAE(碳吸收能)筛选了合适的溶剂,并揭示了所选TFEP重建亥姆霍兹平面和调节HC负极上SEI膜的功能。得益于TFEP在HC表面的优先吸附趋势和强大的阴离子拖拽相互作用,形成了坚固且薄的富含阴离子F的SEI膜,这极大地增强了电极/电解质界面的机械稳定性和钠离子扩散动力学。合理设计的基于TFEP的电解质赋予Na||HC半电池以及2.8 Ah的HC||NaFe(PO)PO软包电池优异的倍率性能、长循环寿命、高安全性和低温适应性。相信这种对调节界面性质的深刻认识将为低成本、长寿命和高安全性钠离子电池的兼容电解质设计开辟一条新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验