增强头颈癌的放射学报告:使用大语言模型将自由文本CT扫描报告转换为结构化报告

Enhancing Radiological Reporting in Head and Neck Cancer: Converting Free-Text CT Scan Reports to Structured Reports Using Large Language Models.

作者信息

Gupta Amit, Malhotra Hema, Garg Amit K, Rangarajan Krithika

机构信息

Department of Radiodiagnosis, All India Institute of Medical Sciences New Delhi, New Delhi, India.

Department of Radiology, Dr. Bhim Rao Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences New Delhi, India.

出版信息

Indian J Radiol Imaging. 2024 Aug 1;35(1):43-49. doi: 10.1055/s-0044-1788589. eCollection 2025 Jan.

Abstract

The aim of this study was to assess efficacy of large language models (LLMs) for converting free-text computed tomography (CT) scan reports of head and neck cancer (HNCa) patients into a structured format using a predefined template.  A retrospective study was conducted using 150 CT reports of HNCa patients. A comprehensive structured reporting template for HNCa CT scans was developed, and the Generative Pre-trained Transformer 4 (GPT-4) was initially used to convert 50 CT reports into a structured format using this template. The generated structured reports were then evaluated by a radiologist for instances of missing or misinterpreted information and any erroneous additional details added by GPT-4. Following this assessment, the template was refined for improved accuracy. This revised template was then used for conversion of 100 other HNCa CT reports into structured format using GPT-4. These reports were then reevaluated in the same manner.  Initially, GPT-4 successfully converted all 50 free-text reports into structured reports. However, there were 10 places with missing information: tracheostomy tube (  = 3), noninclusion of involvement of sternocleidomastoid muscle (  = 2), extranodal tumor extension (  = 3), and contiguous involvement of the neck structures by nodal mass rather than the primary (  = 2). Few instances of nonsuspicious lung nodules were misinterpreted as metastases (  = 2). GPT-4 did not indicate any erroneous additional findings. Using the revised reporting template, GPT-4 converted all the 100 CT reports into a structured format with no repeated or additional mistakes.  LLMs can be used for structuring free-text radiology reports using plain language prompts and a simple yet comprehensive reporting template. Structured radiology reports in oncological patients, although advantageous, are not used widely in practice due to perceived drawbacks like interference with routine radiology workflow and scan interpretation.We found that GPT-4 is highly efficient in converting conventional CT reports of HNCa patients to structured reports using a predefined template.This application of LLMs in radiology can help in enhancing the acceptability and clinical utility of structured radiology reports in oncological imaging. Large language models can successfully and accurately convert conventional radiology reports for oncology scans into a structured format using a comprehensive predefined template and thus can enhance the utility and integration of these reports in routine clinical practice.

摘要

本研究旨在评估大语言模型(LLMs)使用预定义模板将头颈癌(HNCa)患者的自由文本计算机断层扫描(CT)扫描报告转换为结构化格式的效果。

使用150份HNCa患者的CT报告进行了一项回顾性研究。开发了一个用于HNCa CT扫描的综合结构化报告模板,最初使用生成式预训练变换器4(GPT-4)使用该模板将50份CT报告转换为结构化格式。然后由放射科医生对生成的结构化报告进行评估,以查找信息缺失或误解的情况以及GPT-4添加的任何错误的额外细节。在进行此评估之后,对模板进行了完善以提高准确性。然后使用此修订后的模板使用GPT-4将另外100份HNCa CT报告转换为结构化格式。然后以相同的方式对这些报告进行重新评估。

最初,GPT-4成功地将所有50份自由文本报告转换为结构化报告。然而,有10处信息缺失:气管造口管(n = 3)、未包含胸锁乳突肌受累情况(n = 2)、结外肿瘤扩展(n = 3)以及颈部结构由淋巴结肿块而非原发灶连续受累(n = 2)。少数非可疑肺结节实例被误判为转移瘤(n = 2)。GPT-4未显示任何错误的额外发现。使用修订后的报告模板,GPT-4将所有100份CT报告转换为结构化格式,没有重复或额外的错误。

大语言模型可用于使用通俗易懂的提示和一个简单而全面的报告模板来构建自由文本放射学报告。肿瘤患者的结构化放射学报告虽然具有优势,但由于诸如干扰常规放射学工作流程和扫描解读等感知到的缺点,在实践中并未广泛使用。我们发现GPT-4在使用预定义模板将HNCa患者的传统CT报告转换为结构化报告方面效率很高。大语言模型在放射学中的这种应用有助于提高肿瘤成像中结构化放射学报告的可接受性和临床实用性。大语言模型可以使用一个全面的预定义模板成功且准确地将肿瘤扫描的传统放射学报告转换为结构化格式,从而可以提高这些报告在常规临床实践中的实用性和整合度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01f2/11651842/7e268d57e978/10-1055-s-0044-1788589-i2443549-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索