Penning Stephanie, Hong Yaoqin, Cunliffe Taylor, Hor Lilian, Totsika Makrina, Paxman Jason J, Heras Begoña
Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia.
Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
Comput Struct Biotechnol J. 2024 Nov 22;23:4324-4336. doi: 10.1016/j.csbj.2024.11.034. eCollection 2024 Dec.
In bacteria the formation of disulphide bonds is facilitated by a family of enzymes known as the disulphide bond forming (Dsb) proteins, which, despite low sequence homology, belong to the thioredoxin (TRX) superfamily. Among these enzymes is the disulphide bond-forming protein A (DsbA); a periplasmic thiol oxidase responsible for catalysing the oxidative folding of numerous cell envelope and secreted proteins. Pathogenic bacteria often contain diverse Dsb proteins with distinct functionalities commonly associated with pathogenesis. Here we investigate FtDsbA1, a DsbA homologue from the Gram-negative bacterium . Our study shows that FtDsbA1 shares a conserved TRX-like fold bridged by an alpha helical bundle showcased by all DsbA-like proteins. However, FtDsbA1 displays a highly unique variation on this structure, containing an extended and flexible N-terminus and secondary structural elements inserted within the core of the TRX fold itself, which together twist the overall DsbA-like architecture. Additionally, FtDsbA1 exhibits variations to the well conserved active site with an unusual dipeptide in the catalytic CXXC redox centre (CGKC), and a trans configuration for the conserved -proline loop, known for governing DsbA-substrate interactions. FtDsbA1's redox properties are comparable to other DsbA enzymes, however, consistent with its atypical structure, functional analysis reveals FtDsbA1 has a high degree of substrate specificity suggesting a specialised role within oxidative folding pathway. Overall, this work underscores the remarkable malleability of the TRX catalytic core, a ubiquitous and ancestral protein fold. This not only contributes to broadening the structural and functional diversity seen within proteins utilising this core fold but will also enhance the accuracy of AI-driven protein structural prediction tools.
在细菌中,二硫键的形成由一类称为二硫键形成(Dsb)蛋白的酶促进,这些酶尽管序列同源性较低,但属于硫氧还蛋白(TRX)超家族。这些酶中有一种二硫键形成蛋白A(DsbA);一种周质硫醇氧化酶,负责催化许多细胞包膜蛋白和分泌蛋白的氧化折叠。致病细菌通常含有多种具有不同功能的Dsb蛋白,这些功能通常与致病性相关。在这里,我们研究了来自革兰氏阴性细菌的DsbA同源物FtDsbA1。我们的研究表明,FtDsbA1具有保守的TRX样折叠结构,由所有类DsbA蛋白所展示的α螺旋束连接。然而,FtDsbA1在这种结构上表现出高度独特的变异,包含一个延伸且灵活的N端以及插入TRX折叠核心内的二级结构元件,这些共同扭曲了整体的类DsbA结构。此外,FtDsbA1在保守的活性位点也有变异,其催化CXXC氧化还原中心(CGKC)中有一个不寻常的二肽,并且保守的脯氨酸环呈反式构型,该脯氨酸环以调控DsbA与底物的相互作用而闻名。FtDsbA1的氧化还原特性与其他DsbA酶相当,然而,与其非典型结构一致,功能分析表明FtDsbA1具有高度的底物特异性,这表明它在氧化折叠途径中具有特殊作用。总体而言,这项工作强调了TRX催化核心的显著可塑性,这是一种普遍存在且古老的蛋白质折叠结构。这不仅有助于拓宽利用这种核心折叠的蛋白质的结构和功能多样性,还将提高人工智能驱动的蛋白质结构预测工具的准确性。