Wang Geqing, Qin Jilong, Verderosa Anthony D, Hor Lilian, Santos-Martin Carlos, Paxman Jason J, Martin Jennifer L, Totsika Makrina, Heras Begoña
Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia.
Antioxidants (Basel). 2023 Feb 4;12(2):380. doi: 10.3390/antiox12020380.
The formation of disulphide bonds is an essential step in the folding of many proteins that enter the secretory pathway; therefore, it is not surprising that eukaryotic and prokaryotic organisms have dedicated enzymatic systems to catalyse this process. In bacteria, one such enzyme is disulphide bond-forming protein A (DsbA), a thioredoxin-like thiol oxidase that catalyses the oxidative folding of proteins required for virulence and fitness. A large body of work on DsbA proteins, particularly DsbA (EcDsbA), has demonstrated the key role that the Cys-XX-Cys catalytic motif and its unique redox properties play in the thiol oxidase activity of this enzyme. Using mutational and functional analyses, here we identify that a set of charged residues, which form an acidic groove on the non-catalytic face of the enzyme, further modulate the activity of EcDsbA. Our high-resolution structures indicate that these residues form a water-mediated proton wire that can transfer protons from the bulk solvent to the active site. Our results support the view that proton shuffling may facilitate the stabilisation of the buried Cys thiolate formed during the redox reaction and promote the correct direction of the EcDsbA-substrate thiol-disulphide exchange. Comparison with other proteins of the same class and proteins of the thioredoxin-superfamily in general suggest that a proton relay system appears to be a conserved catalytic feature among this widespread superfamily of proteins. Furthermore, this study also indicates that the acidic groove of DsbA could be a promising allosteric site to develop novel DsbA inhibitors as antibacterial therapeutics.
二硫键的形成是许多进入分泌途径的蛋白质折叠过程中的一个关键步骤;因此,真核生物和原核生物拥有专门的酶系统来催化这一过程也就不足为奇了。在细菌中,一种这样的酶是二硫键形成蛋白A(DsbA),它是一种硫氧还蛋白样硫醇氧化酶,催化毒力和适应性所需蛋白质的氧化折叠。大量关于DsbA蛋白的研究工作,特别是DsbA(EcDsbA),已经证明了Cys-XX-Cys催化基序及其独特的氧化还原特性在该酶硫醇氧化酶活性中所起的关键作用。通过突变和功能分析,我们在此确定了一组带电荷的残基,它们在酶的非催化面上形成一个酸性凹槽,进一步调节EcDsbA的活性。我们的高分辨率结构表明,这些残基形成了一条水介导的质子线,可以将质子从本体溶剂转移到活性位点。我们的结果支持这样一种观点,即质子穿梭可能有助于稳定氧化还原反应过程中形成的埋藏半胱氨酸硫醇盐,并促进EcDsbA-底物硫醇-二硫键交换的正确方向。与同一类别的其他蛋白质以及一般硫氧还蛋白超家族的蛋白质进行比较表明,质子传递系统似乎是这个广泛的蛋白质超家族中一个保守的催化特征。此外,这项研究还表明,DsbA的酸性凹槽可能是一个有前景的变构位点,可用于开发新型DsbA抑制剂作为抗菌治疗药物。