Zheng Jing, Li Xinxin, Gong Xun, Hu Yuan, Tang Min
School of Life Sciences, Jiangsu University, Zhenjiang, China.
Department of Otolaryngology Head and Neck Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.
Transl Cancer Res. 2024 Nov 30;13(11):5725-5750. doi: 10.21037/tcr-24-1064. Epub 2024 Nov 21.
BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) contributes significantly to global health challenges, presenting primarily in the oral cavity, pharynx, nasopharynx, and larynx. HNSCC has a high propensity for lymphatic metastasis. Diffuse large B-cell lymphoma (DLBCL), the most common subtype of non-Hodgkin lymphoma, exhibits significant heterogeneity and aggressive behavior, leading to high mortality rates. Epstein-Barr virus (EBV) is notably associated with DLBCL and certain types of HNSCC. The purpose of this study is to elucidate the molecular and immune interplay between HNSCC and DLBCL using bioinformatics and machine learning (ML) to identify shared biomarkers and potential therapeutic targets. METHODS: Differentially expressed genes (DEGs) were identified using the "limma" package in R from the HNSCC dataset in The Cancer Genome Atlas (TCGA) database, and relevant modules were selected through weighted gene co-expression network analysis (WGCNA) from a DLBCL dataset in the Gene Expression Omnibus (GEO) database. Based on their intersection genes, functional enrichment analyses were conducted using Gene Ontology (GO), Disease Ontology, and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Protein-protein interaction (PPI) networks and ML algorithms were employed to screen for biomarkers. The prognostic value of these biomarkers was evaluated using Kaplan-Meier (K-M) survival analysis and receiver operating characteristic (ROC) curve analyses. The Human Protein Atlas (HPA) database facilitated the examination of messenger RNA (mRNA) and protein expressions. Further analyses of mutations, immune infiltration, drug predictions, and pan-cancer impacts were performed. Additionally, single-cell RNA sequencing (scRNA-seq) data analysis at the cell type level was conducted to provide deeper insights into the tumor microenvironment. RESULTS: From 2,040 DEGs and 1,983 module-related genes, 85 shared genes were identified. PPI analysis with six algorithms proposed 21 prospective genes, followed ML examination yielded 16 candidates. Survival and ROC analyses pinpointed four hub genes-, , , and -as significantly associated with patient outcomes, demonstrating high predictive capabilities. Evaluations of mutations and immune infiltration, coupled with drug prediction and a comprehensive cancer analysis, highlighted these biomarkers' roles in tumor immune response and treatment efficacy. The scRNA-seq data analysis revealed an increased abundance of fibroblasts, epithelial cells and mononuclear phagocyte system (MPs) in HNSCC tissues compared to lymphoid tissues. showed higher expression in five cell types in HNSCC tissues, while and exhibited higher expression in specific cell types. CONCLUSIONS: Leveraging bioinformatics and ML, this study identified four pivotal genes with significant diagnostic capabilities for DLBCL and HNSCC. The survival analysis corroborates their diagnostic accuracy, supporting the development of a diagnostic nomogram to assist in clinical decision-making.
背景:头颈部鳞状细胞癌(HNSCC)给全球健康带来了重大挑战,主要发生在口腔、咽、鼻咽和喉。HNSCC有很高的淋巴转移倾向。弥漫性大B细胞淋巴瘤(DLBCL)是非霍奇金淋巴瘤最常见的亚型,具有显著的异质性和侵袭性,导致高死亡率。爱泼斯坦-巴尔病毒(EBV)与DLBCL和某些类型的HNSCC显著相关。本研究的目的是利用生物信息学和机器学习(ML)来阐明HNSCC和DLBCL之间的分子和免疫相互作用,以确定共同的生物标志物和潜在的治疗靶点。 方法:使用R语言中的“limma”软件包从癌症基因组图谱(TCGA)数据库的HNSCC数据集中鉴定差异表达基因(DEG),并通过加权基因共表达网络分析(WGCNA)从基因表达综合数据库(GEO)中的DLBCL数据集中选择相关模块。基于它们的交集基因,使用基因本体(GO)、疾病本体和京都基因与基因组百科全书(KEGG)数据库进行功能富集分析。采用蛋白质-蛋白质相互作用(PPI)网络和ML算法筛选生物标志物。使用Kaplan-Meier(K-M)生存分析和受试者工作特征(ROC)曲线分析评估这些生物标志物的预后价值。人类蛋白质图谱(HPA)数据库有助于检查信使RNA(mRNA)和蛋白质表达。进一步进行了突变、免疫浸润、药物预测和泛癌影响分析。此外,还进行了细胞类型水平的单细胞RNA测序(scRNA-seq)数据分析,以更深入地了解肿瘤微环境。 结果:从2040个DEG和1983个模块相关基因中,鉴定出85个共享基因。用六种算法进行的PPI分析提出了21个潜在基因,随后的ML检验产生了16个候选基因。生存分析和ROC分析确定了四个枢纽基因——、、和——与患者预后显著相关,显示出高预测能力。对突变和免疫浸润的评估,以及药物预测和全面的癌症分析,突出了这些生物标志物在肿瘤免疫反应和治疗效果中的作用。scRNA-seq数据分析显示,与淋巴组织相比,HNSCC组织中成纤维细胞、上皮细胞和单核吞噬细胞系统(MPs)的丰度增加。在HNSCC组织的五种细胞类型中表达较高,而和在特定细胞类型中表达较高。 结论:本研究利用生物信息学和ML,鉴定出四个对DLBCL和HNSCC具有显著诊断能力的关键基因。生存分析证实了它们的诊断准确性,支持开发诊断列线图以协助临床决策。
Front Cell Dev Biol. 2022-8-23
Clin Transl Med. 2024-3
CA Cancer J Clin. 2024
BMC Bioinformatics. 2023-12-17
Nucleic Acids Res. 2024-1-5
Immunity. 2023-10-10