文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过生物信息学和机器学习阐明头颈部鳞状细胞癌与弥漫性大B细胞淋巴瘤之间的分子和免疫相互作用。

Elucidating the molecular and immune interplay between head and neck squamous cell carcinoma and diffuse large B-cell lymphoma through bioinformatics and machine learning.

作者信息

Zheng Jing, Li Xinxin, Gong Xun, Hu Yuan, Tang Min

机构信息

School of Life Sciences, Jiangsu University, Zhenjiang, China.

Department of Otolaryngology Head and Neck Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.

出版信息

Transl Cancer Res. 2024 Nov 30;13(11):5725-5750. doi: 10.21037/tcr-24-1064. Epub 2024 Nov 21.


DOI:10.21037/tcr-24-1064
PMID:39697749
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11651739/
Abstract

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) contributes significantly to global health challenges, presenting primarily in the oral cavity, pharynx, nasopharynx, and larynx. HNSCC has a high propensity for lymphatic metastasis. Diffuse large B-cell lymphoma (DLBCL), the most common subtype of non-Hodgkin lymphoma, exhibits significant heterogeneity and aggressive behavior, leading to high mortality rates. Epstein-Barr virus (EBV) is notably associated with DLBCL and certain types of HNSCC. The purpose of this study is to elucidate the molecular and immune interplay between HNSCC and DLBCL using bioinformatics and machine learning (ML) to identify shared biomarkers and potential therapeutic targets. METHODS: Differentially expressed genes (DEGs) were identified using the "limma" package in R from the HNSCC dataset in The Cancer Genome Atlas (TCGA) database, and relevant modules were selected through weighted gene co-expression network analysis (WGCNA) from a DLBCL dataset in the Gene Expression Omnibus (GEO) database. Based on their intersection genes, functional enrichment analyses were conducted using Gene Ontology (GO), Disease Ontology, and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Protein-protein interaction (PPI) networks and ML algorithms were employed to screen for biomarkers. The prognostic value of these biomarkers was evaluated using Kaplan-Meier (K-M) survival analysis and receiver operating characteristic (ROC) curve analyses. The Human Protein Atlas (HPA) database facilitated the examination of messenger RNA (mRNA) and protein expressions. Further analyses of mutations, immune infiltration, drug predictions, and pan-cancer impacts were performed. Additionally, single-cell RNA sequencing (scRNA-seq) data analysis at the cell type level was conducted to provide deeper insights into the tumor microenvironment. RESULTS: From 2,040 DEGs and 1,983 module-related genes, 85 shared genes were identified. PPI analysis with six algorithms proposed 21 prospective genes, followed ML examination yielded 16 candidates. Survival and ROC analyses pinpointed four hub genes-, , , and -as significantly associated with patient outcomes, demonstrating high predictive capabilities. Evaluations of mutations and immune infiltration, coupled with drug prediction and a comprehensive cancer analysis, highlighted these biomarkers' roles in tumor immune response and treatment efficacy. The scRNA-seq data analysis revealed an increased abundance of fibroblasts, epithelial cells and mononuclear phagocyte system (MPs) in HNSCC tissues compared to lymphoid tissues. showed higher expression in five cell types in HNSCC tissues, while and exhibited higher expression in specific cell types. CONCLUSIONS: Leveraging bioinformatics and ML, this study identified four pivotal genes with significant diagnostic capabilities for DLBCL and HNSCC. The survival analysis corroborates their diagnostic accuracy, supporting the development of a diagnostic nomogram to assist in clinical decision-making.

摘要

背景:头颈部鳞状细胞癌(HNSCC)给全球健康带来了重大挑战,主要发生在口腔、咽、鼻咽和喉。HNSCC有很高的淋巴转移倾向。弥漫性大B细胞淋巴瘤(DLBCL)是非霍奇金淋巴瘤最常见的亚型,具有显著的异质性和侵袭性,导致高死亡率。爱泼斯坦-巴尔病毒(EBV)与DLBCL和某些类型的HNSCC显著相关。本研究的目的是利用生物信息学和机器学习(ML)来阐明HNSCC和DLBCL之间的分子和免疫相互作用,以确定共同的生物标志物和潜在的治疗靶点。 方法:使用R语言中的“limma”软件包从癌症基因组图谱(TCGA)数据库的HNSCC数据集中鉴定差异表达基因(DEG),并通过加权基因共表达网络分析(WGCNA)从基因表达综合数据库(GEO)中的DLBCL数据集中选择相关模块。基于它们的交集基因,使用基因本体(GO)、疾病本体和京都基因与基因组百科全书(KEGG)数据库进行功能富集分析。采用蛋白质-蛋白质相互作用(PPI)网络和ML算法筛选生物标志物。使用Kaplan-Meier(K-M)生存分析和受试者工作特征(ROC)曲线分析评估这些生物标志物的预后价值。人类蛋白质图谱(HPA)数据库有助于检查信使RNA(mRNA)和蛋白质表达。进一步进行了突变、免疫浸润、药物预测和泛癌影响分析。此外,还进行了细胞类型水平的单细胞RNA测序(scRNA-seq)数据分析,以更深入地了解肿瘤微环境。 结果:从2040个DEG和1983个模块相关基因中,鉴定出85个共享基因。用六种算法进行的PPI分析提出了21个潜在基因,随后的ML检验产生了16个候选基因。生存分析和ROC分析确定了四个枢纽基因——、、和——与患者预后显著相关,显示出高预测能力。对突变和免疫浸润的评估,以及药物预测和全面的癌症分析,突出了这些生物标志物在肿瘤免疫反应和治疗效果中的作用。scRNA-seq数据分析显示,与淋巴组织相比,HNSCC组织中成纤维细胞、上皮细胞和单核吞噬细胞系统(MPs)的丰度增加。在HNSCC组织的五种细胞类型中表达较高,而和在特定细胞类型中表达较高。 结论:本研究利用生物信息学和ML,鉴定出四个对DLBCL和HNSCC具有显著诊断能力的关键基因。生存分析证实了它们的诊断准确性,支持开发诊断列线图以协助临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ccc/11651739/0192b781f23f/tcr-13-11-5725-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ccc/11651739/85eb1c0b2621/tcr-13-11-5725-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ccc/11651739/69ce55ca0f42/tcr-13-11-5725-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ccc/11651739/dd49bdc5d1ce/tcr-13-11-5725-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ccc/11651739/8d7e64ad3c22/tcr-13-11-5725-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ccc/11651739/42d91a55e78d/tcr-13-11-5725-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ccc/11651739/caf9e69623be/tcr-13-11-5725-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ccc/11651739/62031e6adbe2/tcr-13-11-5725-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ccc/11651739/f09c12247585/tcr-13-11-5725-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ccc/11651739/9fd3a51bf039/tcr-13-11-5725-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ccc/11651739/0192b781f23f/tcr-13-11-5725-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ccc/11651739/85eb1c0b2621/tcr-13-11-5725-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ccc/11651739/69ce55ca0f42/tcr-13-11-5725-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ccc/11651739/dd49bdc5d1ce/tcr-13-11-5725-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ccc/11651739/8d7e64ad3c22/tcr-13-11-5725-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ccc/11651739/42d91a55e78d/tcr-13-11-5725-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ccc/11651739/caf9e69623be/tcr-13-11-5725-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ccc/11651739/62031e6adbe2/tcr-13-11-5725-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ccc/11651739/f09c12247585/tcr-13-11-5725-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ccc/11651739/9fd3a51bf039/tcr-13-11-5725-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ccc/11651739/0192b781f23f/tcr-13-11-5725-f10.jpg

相似文献

[1]
Elucidating the molecular and immune interplay between head and neck squamous cell carcinoma and diffuse large B-cell lymphoma through bioinformatics and machine learning.

Transl Cancer Res. 2024-11-30

[2]
Integrative bioinformatics and machine learning identify key crosstalk genes and immune interactions in head and neck cancer and Hodgkin lymphoma.

Sci Rep. 2025-5-6

[3]
Excavating novel diagnostic and prognostic long non-coding RNAs (lncRNAs) for head and neck squamous cell carcinoma: an integrated bioinformatics analysis of competing endogenous RNAs (ceRNAs) and gene co-expression networks.

Bioengineered. 2021-12

[4]
Identification and verification of eight cancer-associated fibroblasts related genes as a prognostic signature for head and neck squamous cell carcinoma.

Heliyon. 2023-2-28

[5]
Construction and validation of a prognostic model based on stage-associated signature genes of head and neck squamous cell carcinoma: a bioinformatics study.

Ann Transl Med. 2022-12

[6]
Seven Immune-Related Genes' Prognostic Value and Correlation with Treatment Outcome in Head and Neck Squamous Cell Carcinoma.

Mediators Inflamm. 2023-4-20

[7]
Novel prognostic matrisome-related gene signature of head and neck squamous cell carcinoma.

Front Cell Dev Biol. 2022-8-23

[8]
Identification of novel hub genes associated with lymph node metastasis of head and neck squamous cell carcinoma by completive bioinformatics analysis.

Ann Transl Med. 2021-11

[9]
Six potential biomarkers in septic shock: a deep bioinformatics and prospective observational study.

Front Immunol. 2023

[10]
Bioinformatics-Based Identification of Key Prognostic Genes in Neuroblastoma with a Focus on Immune Cell Infiltration and Diagnostic Potential of VGF.

Pharmgenomics Pers Med. 2024-10-10

引用本文的文献

[1]
Integrative bioinformatics and machine learning identify key crosstalk genes and immune interactions in head and neck cancer and Hodgkin lymphoma.

Sci Rep. 2025-5-6

本文引用的文献

[1]
Targeting neutrophils: Mechanism and advances in cancer therapy.

Clin Transl Med. 2024-3

[2]
KLF7 regulates super-enhancer-driven IGF2BP2 overexpression to promote the progression of head and neck squamous cell carcinoma.

J Exp Clin Cancer Res. 2024-3-5

[3]
A multi-centric dataset on patient-individual pathological lymph node involvement in head and neck squamous cell carcinoma.

Data Brief. 2023-12-29

[4]
Cancer statistics, 2024.

CA Cancer J Clin. 2024

[5]
TCGAplot: an R package for integrative pan-cancer analysis and visualization of TCGA multi-omics data.

BMC Bioinformatics. 2023-12-17

[6]
ACTN1 promotes HNSCC tumorigenesis and cisplatin resistance by enhancing MYH9-dependent degradation of GSK-3β and integrin β1-mediated phosphorylation of FAK.

J Exp Clin Cancer Res. 2023-12-7

[7]
NCBI GEO: archive for gene expression and epigenomics data sets: 23-year update.

Nucleic Acids Res. 2024-1-5

[8]
Correlation between the gut microbiome and neurodegenerative diseases: a review of metagenomics evidence.

Neural Regen Res. 2024-4

[9]
Cancer cell-intrinsic mechanisms driving acquired immune tolerance.

Immunity. 2023-10-10

[10]
-derived metabolites boost anti-PD1 efficacy in colorectal cancer by inhibiting regulatory T cells through modulating IDO1/Kyn/AHR axis.

Gut. 2023-11-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索