Guo Qiang, Xiao Yang, Chu Jing, Sun Yu, Li Shaomei, Zhang Shihai
Department of Clinical Laboratory, Anhui Children's Hospital, Hefei, People's Republic of China.
Xuhzou Medical University, Jiangsu, People's Republic of China.
Pharmgenomics Pers Med. 2024 Oct 10;17:453-472. doi: 10.2147/PGPM.S461072. eCollection 2024.
This study aims to identify differentially expressed genes (DEGs) in neuroblastoma (NB) through comprehensive bioinformatics analysis and machine learning techniques. We seek to elucidate these DEGs' biological functions and associated signaling pathways. Furthermore, our objective extends to predicting upstream microRNAs (miRNAs) and relevant transcription factors of pivotal genes, with the ultimate goal of guiding clinical diagnostics and informing future treatment strategies for Neuroblastoma.
In this study, we sourced datasets GSE49710 and TARGET from the GEO and UCSC-XENA databases, respectively. Differentially expressed genes (DEGs) were identified using the R language "limma" package. Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of these DEGs were conducted using the "clusterProfiler" package. We employed Weighted Gene Co-expression Network Analysis (WGCNA) to isolate the most significant modules associated with death and MYCN amplification, specifically MEpink and MEbrown modules. These modules were then cross-referenced with the DEGs for further GO and KEGG pathway analyses. LASSO regression analysis, facilitated by the "glmnet" package, was utilized to pinpoint three hub genes. We performed differential analysis on these genes and constructed Receiver Operating Characteristic (ROC) curves for disease diagnosis purposes. Immune infiltration analysis was conducted using the "GSVA" package's ssGSEA function. Additionally, single-gene Gene Set Enrichment Analysis (GSEA) on the hub gene was carried out based on Reactome and KEGG databases. Upstream miRNA and transcription factors associated with the hub gene were predicted using RegNetwork, with visual representations created in Cytoscape. Furthermore, to validate the three identified markers in neuroblastoma tissues, quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) analysis was conducted.
We identified 483 differentially expressed genes (DEGs) in neuroblastoma. These genes predominantly function in protein translation, membrane composition, and RNA transcription regulation, and are implicated in multiple signaling pathways relevant to neurodegenerative diseases. Utilizing LASSO regression analysis, we pinpointed three hub genes: , and . The Receiver Operating Characteristic (ROC) curve analysis yielded Area Under Curve (AUC) values of 0.751 and 0.722 for , 0.79 and 0.656 for , and 0.8 and 0.753 for , respectively. Our immune infiltration analysis revealed significant correlations among monocytes, follicular helper T cells, and CD4+ T cells. Notably, in the death group, we observed heightened infiltration levels of activated CD4+ T cells, macrophages, and Th2 cells. exhibited a close association with the infiltration of monocytes, CD4+ T cells, and Th2 cells, with P-values less than 0.05. Furthermore, qRT-PCR analysis corroborated the upregulation of in neuroblastoma tissues, further validating our findings.
The hub genes (, and ) of neuroblastoma are screened. , one of the hub genes, may have a high diagnostic value and is involved in the immune cell infiltration in neuroblastoma tissue, which may be used as a biomarker for the diagnosis of neuroblastoma and provides a new direction for clinical prognosis prediction and management improvement.
本研究旨在通过综合生物信息学分析和机器学习技术,鉴定神经母细胞瘤(NB)中差异表达基因(DEGs)。我们试图阐明这些DEGs的生物学功能及相关信号通路。此外,我们的目标还包括预测关键基因的上游微小RNA(miRNAs)和相关转录因子,最终目的是指导神经母细胞瘤的临床诊断并为未来治疗策略提供参考。
在本研究中,我们分别从GEO和UCSC-XENA数据库获取数据集GSE49710和TARGET。使用R语言的“limma”包鉴定差异表达基因(DEGs)。随后,使用“clusterProfiler”包对这些DEGs进行基因本体论(GO)和京都基因与基因组百科全书(KEGG)富集分析。我们采用加权基因共表达网络分析(WGCNA)来分离与死亡和MYCN扩增相关的最显著模块,特别是MEpink和MEbrown模块。然后将这些模块与DEGs进行交叉参考,以进行进一步的GO和KEGG通路分析。利用“glmnet”包进行的LASSO回归分析来确定三个枢纽基因。我们对这些基因进行差异分析,并构建受试者工作特征(ROC)曲线用于疾病诊断。使用“GSVA”包的ssGSEA功能进行免疫浸润分析。此外,基于Reactome和KEGG数据库对枢纽基因进行单基因基因集富集分析(GSEA)。使用RegNetwork预测与枢纽基因相关的上游miRNA和转录因子,并在Cytoscape中创建可视化表示。此外,为了验证神经母细胞瘤组织中鉴定出的三个标志物,进行了定量实时聚合酶链反应(qRT-PCR)分析。
我们在神经母细胞瘤中鉴定出483个差异表达基因(DEGs)。这些基因主要在蛋白质翻译、膜组成和RNA转录调控中发挥作用,并涉及与神经退行性疾病相关的多个信号通路。利用LASSO回归分析,我们确定了三个枢纽基因: 、 和 。受试者工作特征(ROC)曲线分析得出, 的曲线下面积(AUC)值分别为0.751和0.722, 的为0.79和0.656, 的为0.8和0.753。我们的免疫浸润分析显示单核细胞、滤泡辅助性T细胞和CD4 + T细胞之间存在显著相关性。值得注意的是,在死亡组中,我们观察到活化的CD4 + T细胞、巨噬细胞和Th2细胞的浸润水平升高。 与单核细胞、CD4 + T细胞和Th2细胞的浸润密切相关,P值小于0.05。此外,qRT-PCR分析证实了神经母细胞瘤组织中 的上调,进一步验证了我们的发现。
筛选出神经母细胞瘤的枢纽基因( 、 和 )。枢纽基因之一的 可能具有较高的诊断价值,并参与神经母细胞瘤组织中的免疫细胞浸润,可作为神经母细胞瘤诊断的生物标志物,为临床预后预测和管理改善提供新方向。