Bergmann Florian, Jungwirth Nicholas R, Bosworth Bryan T, Cheron Jerome, Long Christian J, Orloff Nathan D
Communications Technology Laboratory, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA.
Department of Physics, University of Colorado, Libby Dr, Boulder, Colorado 80302, USA.
Appl Phys Lett. 2024;124(7). doi: 10.1063/5.0188240.
Fused silica has become an interesting alternative to silicon for millimeter-wave (mmWave) applications. Unfortunately, there are a few reports on the measurement of fused silica's permittivity above 110 GHz that use electrical rather than optical methods. Given that mmWave applications use electrical circuits, additional electrical data would be useful to industry. To test the feasibility of electrical methods, we applied on-wafer techniques based on coplanar waveguide transmission lines to measure the complex permittivity of fused silica to 325 GHz. Our approach used the multiline thru-reflect-line algorithm on the scattering parameter measurements of transmission lines. Our method combined these results with dc measurements of the resistivity of the metals, simulations of the coplanar waveguide cross section, and dimensional metrology. In short, our measurements do not show significant dielectric dispersion for fused silica up to 325 GHz. The resulting complex permittivity was and a loss tangent from 320 MHz to 325 GHz. To support our conclusions, we performed an uncertainty analysis considering relevant sources of uncertainty. In the broader context, these results show that fused silica is a suitable substrate for mmWave electronics where the loss tangent must be less than 0.005 up to 325 GHz.
对于毫米波(mmWave)应用而言,熔融石英已成为硅的一种引人关注的替代材料。遗憾的是,关于使用电学而非光学方法测量110 GHz以上熔融石英介电常数的报道较少。鉴于毫米波应用使用电路,额外的电学数据对行业将十分有用。为测试电学方法的可行性,我们应用基于共面波导传输线的晶圆上技术来测量熔融石英至325 GHz的复介电常数。我们的方法在传输线的散射参数测量中使用多线通-反-线算法。我们的方法将这些结果与金属电阻率的直流测量、共面波导横截面的模拟以及尺寸计量学相结合。简而言之,我们的测量结果表明,直至325 GHz,熔融石英均未显示出显著的介电色散。在320 MHz至325 GHz范围内,所得复介电常数为 ,损耗角正切为 。为支持我们的结论,我们进行了考虑相关不确定度来源的不确定度分析。从更广泛的背景来看,这些结果表明,熔融石英是毫米波电子学的一种合适衬底,在高达325 GHz的频率下,其损耗角正切必须小于0.005。