Suppr超能文献

用于风电场功率预测的拟牛顿优化柯尔莫哥洛夫-阿诺德网络

Quasi-Newton optimised Kolmogorov-Arnold Networks for wind farm power prediction.

作者信息

Mubarak Auwalu Saleh, Ameen Zubaida Said, Mati Sagiru, Lasisi Ayodele, Naveed Quadri Noorulhasan, Abdulkadir Rabiu Aliyu

机构信息

Operational Research Centre in Healthcare, Near East University, TRNC Mersin 10, Nicosia, 99138, Turkey.

Department of Electrical Engineering, Aliko Dangote University of Science and Technology, Wudil, Kano, Nigeria.

出版信息

Heliyon. 2024 Nov 30;10(23):e40799. doi: 10.1016/j.heliyon.2024.e40799. eCollection 2024 Dec 15.

Abstract

Having accurate and effective wind energy forecasting that can be easily incorporated into smart networks is important. Appropriate planning and energy generation predictions are necessary for these infrastructures. The production of wind energy is linked to instability and unpredictability. Wind energy forecasting has traditionally been performed using statistical models, but with the advent of artificial intelligence (AI), research indicates that AI is more accurate than the statical technique. In this study, the nominal power of six wind farms in China was predicted using Kolmogorov-Arnold Networks (KAN) and Multilayer Perceptron (MLP) models. KAN as an alternative to the conventional MLP, has the ability to handle problems with scalability, vanishing gradients, and interpretability associated with MLP. The KAN uses learnable B-Spline as activation functions prompting it to address the issues of the MLP. We employed the Radial Basis Function (RBF) with Gaussian kernels to approximate the 3-order B-spline basis. In most deep learning models stochastic gradient-based optimization algorithms such as Adaptive Moment Estimation (ADAM) and Stochastic Gradient Descent (SGD) optimizer are mostly employed, a quasi-Newton optimization technique Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm LBFGS was employed in this work to approximate the Hessian matrix and estimate the parameter space's curvature. Also, in the preprocessing of the data, the Interquartile Range (IQR) technique is used to handle outliers and a clustering-based K-Nearest Neighbor (KNN) imputer to handle missing values. Based on different sites, the KAN-LBFGS shows superior performance based on the performance evaluation metrics with site 5 achieving MSE of 0.0039, RMSE of 0.0622, MAE of 0.0352, and DC of 0.9468. The study highlights the importance of the model's architecture, preprocessing and optimization techniques.

摘要

拥有准确且有效的风能预测并能轻松融入智能电网非常重要。对于这些基础设施而言,适当的规划和能源生产预测是必要的。风能生产与不稳定性和不可预测性相关联。传统上,风能预测是使用统计模型进行的,但随着人工智能(AI)的出现,研究表明AI比统计技术更准确。在本研究中,使用柯尔莫哥洛夫 - 阿诺德网络(KAN)和多层感知器(MLP)模型对中国六个风电场的标称功率进行了预测。KAN作为传统MLP的替代方案,有能力处理与MLP相关的可扩展性、梯度消失和可解释性问题。KAN使用可学习的B样条作为激活函数,促使其解决MLP的问题。我们采用具有高斯核的径向基函数(RBF)来近似三阶B样条基。在大多数深度学习模型中,大多采用基于随机梯度的优化算法,如自适应矩估计(ADAM)和随机梯度下降(SGD)优化器,在本工作中采用了拟牛顿优化技术有限内存布罗伊登 - 弗莱彻 - 戈德法布 - 香农算法LBFGS来近似海森矩阵并估计参数空间的曲率。此外,在数据预处理中,使用四分位距(IQR)技术处理异常值,并使用基于聚类的K近邻(KNN)插补器处理缺失值。基于不同的站点,KAN - LBFGS在性能评估指标方面表现出卓越性能,站点5的均方误差(MSE)为0.0039,均方根误差(RMSE)为0.0622,平均绝对误差(MAE)为0.0352,决定系数(DC)为0.9468。该研究突出了模型架构、预处理和优化技术的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验