Medico Federica, Kim Seungcheol, Surwase Sachin S, Liu Haoyan, Kim Yeu-Chun
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21287, USA.
Drug Deliv Transl Res. 2024 Dec 19. doi: 10.1007/s13346-024-01759-8.
Human cells, such as fibroblasts and particularly human mesenchymal stem cells (hMSCs), represent a promising and effective therapeutic tool for a range of cell-based therapies used to treat various diseases. The effective delivery of therapeutic cells remains a challenge due to limitations in targeting, invasiveness, and cell viability. To address these challenges, we developed a microneedle (MN) system for minimally invasive cell delivery with high cellular stability. The MN system comprises a core of gelatin methacryloyl (GelMA) hydrogel embedded with fibroblasts, encased in a polylactic-co-glycolic acid (PLGA) shell that enhances structural integrity for efficient skin penetration. The fabrication process involves UV-crosslinking of the GelMA hydrogel with cells, optimizing both cell encapsulation and structural strength. This MN system achieves over 80% cell viability after seven days in vitro, with the conventional GelMA formulation providing superior stability and cellular outcomes. This platform's ability to ensure sustained cell viability presents promising implications for future applications in regenerative medicine, wound healing, and localized treatments for skin conditions. This MN system opens new avenues for cell-based therapies, offering a versatile and scalable solution for therapeutic cell delivery.
人类细胞,如成纤维细胞,尤其是人间充质干细胞(hMSCs),是用于治疗各种疾病的一系列细胞疗法中一种很有前景且有效的治疗工具。由于在靶向性、侵袭性和细胞活力方面存在局限性,治疗性细胞的有效递送仍然是一个挑战。为应对这些挑战,我们开发了一种微针(MN)系统,用于微创细胞递送,具有高细胞稳定性。该MN系统包括一个嵌入成纤维细胞的甲基丙烯酰化明胶(GelMA)水凝胶核心,包裹在聚乳酸-乙醇酸共聚物(PLGA)外壳中,该外壳增强了结构完整性,以便有效穿透皮肤。制造过程涉及GelMA水凝胶与细胞的紫外线交联,优化细胞封装和结构强度。该MN系统在体外七天后实现了超过80%的细胞活力,传统的GelMA配方具有更好的稳定性和细胞结果。该平台确保细胞持续存活的能力对再生医学、伤口愈合和皮肤疾病的局部治疗的未来应用具有重要意义。该MN系统为基于细胞的疗法开辟了新途径,为治疗性细胞递送提供了一种通用且可扩展的解决方案。