Peng Weihang, Li Jinze, Cheng Jiale, Yang Jinlong, Yang Lingzhi, Dong Haifeng, Zhang Xueji
School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China.
Shenzhen Key Laboratory of Nano-Biosensing Technology, Shenzhen 518060, P. R. China.
ACS Appl Mater Interfaces. 2025 Jul 16;17(28):40196-40207. doi: 10.1021/acsami.5c07830. Epub 2025 Jul 2.
Infected wounds are difficult to treat due to biofilm formation, drug-resistant bacteria, and inefficient localized therapy. To address these challenges, we developed a core-shell microneedle (MN) patch that enables sequential delivery of copper peroxide (CuO) nanoparticles and vascular endothelial growth factor (VEGF) for synergistic healing. CuO was encapsulated in zeolitic imidazolate framework-8 (CuO@ZIF-8) to improve the aqueous stability and regulate reactive oxygen species (ROS) generation. The antibacterial nanocomposite was loaded into a pH-sensitive hyaluronic acid (HA) core layer for rapid release under a weakly acidic wound microenvironment, while VEGF was incorporated into a gelatin methacryloyl (GelMA) shell for sustained delivery. Upon application, the core dissolves to release Cu, Zn, and ROS, disrupting biofilms and killing bacteria. Subsequently, the shell swells and degrades to release VEGF, promoting angiogenesis and tissue regeneration. In a -infected wound model, the MN patch demonstrated potent antibacterial activity, enhanced neovascularization, and accelerated healing. This programmable, dual-functional MN platform offers an effective strategy for treating infected wounds by integrating infection control with tissue regeneration in a temporally coordinated manner.
由于生物膜形成、耐药细菌和局部治疗效率低下,感染伤口难以治疗。为应对这些挑战,我们开发了一种核壳微针(MN)贴片,能够依次递送过氧化铜(CuO)纳米颗粒和血管内皮生长因子(VEGF)以实现协同愈合。CuO被封装在沸石咪唑酯骨架-8(CuO@ZIF-8)中,以提高其在水中的稳定性并调节活性氧(ROS)的产生。抗菌纳米复合材料被加载到pH敏感的透明质酸(HA)核心层中,以便在弱酸性伤口微环境下快速释放,而VEGF则被掺入甲基丙烯酰化明胶(GelMA)外壳中以实现持续释放。贴片应用后,核心溶解以释放铜、锌和ROS,破坏生物膜并杀死细菌。随后,外壳膨胀并降解以释放VEGF,促进血管生成和组织再生。在感染伤口模型中,MN贴片表现出强大的抗菌活性、增强的新血管形成和加速的愈合。这种可编程的双功能MN平台通过以时间协调的方式将感染控制与组织再生相结合,为治疗感染伤口提供了一种有效的策略。