Tarasovetc Ekaterina V, Sissoko Gunter B, Maiorov Aleksandr, Mukhina Anna S, Ataullakhanov Fazoil I, Cheeseman Iain M, Grishchuk Ekaterina L
Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.
Whitehead Institute for Biomedical Research, Cambridge, MA 02142.
Proc Natl Acad Sci U S A. 2024 Dec 24;121(52):e2401344121. doi: 10.1073/pnas.2401344121. Epub 2024 Dec 19.
Macromolecular assembly depends on tightly regulated pairwise binding interactions that are selectively favored at assembly sites while being disfavored in the soluble phase. This selective control can arise due to molecular density-enhanced binding, as recently found for the kinetochore scaffold protein CENP-T. When clustered, CENP-T recruits markedly more Ndc80 complexes than its monomeric counterpart, but the underlying molecular basis remains elusive. Here, we use quantitative in vitro assays to reveal two distinct mechanisms driving this behavior. First, Ndc80 binding to CENP-T is a two-step process: initially, Ndc80 molecules rapidly associate and dissociate from disordered N-terminal binding sites on CENP-T. Over time, these sites undergo maturation, resulting in stronger Ndc80 retention. Second, we find that this maturation transition is regulated by a kinetic barrier that is sensitive to the molecular environment. In the soluble phase, binding site maturation is slow, but within CENP-T clusters, this process is markedly accelerated. Notably, the two Ndc80 binding sites in human CENP-T exhibit distinct maturation rates and environmental sensitivities, which correlate with their different amino acid content and predicted binding conformations. This clustering-induced maturation is evident in dividing human cells, suggesting a distinct regulatory entry point for controlling kinetochore assembly. We propose that the tunable acceleration of binding site maturation by molecular crowding may represent a general mechanism for promoting the formation of macromolecular structures.
大分子组装依赖于严格调控的成对结合相互作用,这种相互作用在组装位点被选择性地促进,而在可溶性相中则不受青睐。这种选择性控制可能源于分子密度增强的结合,最近在动粒支架蛋白CENP-T中发现了这种情况。聚集时,CENP-T招募的Ndc80复合物明显多于其单体形式,但潜在的分子基础仍然难以捉摸。在这里,我们使用定量体外试验来揭示驱动这种行为的两种不同机制。首先,Ndc80与CENP-T的结合是一个两步过程:最初,Ndc80分子迅速与CENP-T上无序的N端结合位点结合并解离。随着时间的推移,这些位点会成熟,导致Ndc80保留更强。其次,我们发现这种成熟转变受对分子环境敏感的动力学屏障调控。在可溶性相中,结合位点成熟缓慢,但在CENP-T簇内,这个过程明显加速。值得注意的是,人类CENP-T中的两个Ndc80结合位点表现出不同的成熟速率和环境敏感性,这与其不同的氨基酸含量和预测的结合构象相关。这种聚集诱导的成熟在分裂的人类细胞中很明显,表明这是控制动粒组装的一个独特调控切入点。我们提出,通过分子拥挤对结合位点成熟进行可调加速可能代表了促进大分子结构形成的一种普遍机制。