Suppr超能文献

利用机器学习改进核磁共振时间序列的硬建模。

Using machine learning to improve the hard modeling of NMR time series.

作者信息

Hellwig Jan, Strauß Tobias, von Harbou Erik, Neymeyr Klaus

机构信息

Universität Rostock, Institut für Mathematik, 18057 Rostock, Germany; Leibniz-Institut für Katalyse e.V., 18059 Rostock, Germany.

Universität Rostock, Institut für Mathematik, 18057 Rostock, Germany.

出版信息

J Magn Reson. 2025 Jan;370:107813. doi: 10.1016/j.jmr.2024.107813. Epub 2024 Dec 16.

Abstract

Modeling time series of NMR spectra is a useful method to accurately extract information such as temporal concentration profiles from complex processes, e.g. reactions. Modeling these time series by using nonlinear optimization often suffers from high runtimes. On the other hand, using deep learning solves the modeling problem quickly, especially for single spectra with separated peaks. However, the accuracy decreases significantly when peaks overlap or cross. We propose a hybrid approach combining the strengths of both methods while mitigating their drawbacks. This hybrid methods improves on a previous work (Meinhardt et al., 2022) and employs neural networks to predict initial parameters for the optimization algorithm, which only needs to fine-tune the parameters afterwards. We present results for both constructed and experimental data sets and achieve improvements in both runtime and accuracy.

摘要

对核磁共振光谱的时间序列进行建模是一种从复杂过程(如反应)中准确提取时间浓度分布等信息的有用方法。使用非线性优化对这些时间序列进行建模通常运行时间较长。另一方面,使用深度学习可以快速解决建模问题,特别是对于具有分离峰的单光谱。然而,当峰重叠或交叉时,准确性会显著下降。我们提出了一种混合方法,结合了两种方法的优点,同时减轻了它们的缺点。这种混合方法改进了之前的工作(Meinhardt等人,2022年),并采用神经网络为优化算法预测初始参数,优化算法之后只需对参数进行微调。我们展示了构建数据集和实验数据集的结果,并在运行时间和准确性方面都取得了改进。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验