Hellwig Jan, Strauß Tobias, von Harbou Erik, Neymeyr Klaus
Universität Rostock, Institut für Mathematik, 18057 Rostock, Germany; Leibniz-Institut für Katalyse e.V., 18059 Rostock, Germany.
Universität Rostock, Institut für Mathematik, 18057 Rostock, Germany.
J Magn Reson. 2025 Jan;370:107813. doi: 10.1016/j.jmr.2024.107813. Epub 2024 Dec 16.
Modeling time series of NMR spectra is a useful method to accurately extract information such as temporal concentration profiles from complex processes, e.g. reactions. Modeling these time series by using nonlinear optimization often suffers from high runtimes. On the other hand, using deep learning solves the modeling problem quickly, especially for single spectra with separated peaks. However, the accuracy decreases significantly when peaks overlap or cross. We propose a hybrid approach combining the strengths of both methods while mitigating their drawbacks. This hybrid methods improves on a previous work (Meinhardt et al., 2022) and employs neural networks to predict initial parameters for the optimization algorithm, which only needs to fine-tune the parameters afterwards. We present results for both constructed and experimental data sets and achieve improvements in both runtime and accuracy.
对核磁共振光谱的时间序列进行建模是一种从复杂过程(如反应)中准确提取时间浓度分布等信息的有用方法。使用非线性优化对这些时间序列进行建模通常运行时间较长。另一方面,使用深度学习可以快速解决建模问题,特别是对于具有分离峰的单光谱。然而,当峰重叠或交叉时,准确性会显著下降。我们提出了一种混合方法,结合了两种方法的优点,同时减轻了它们的缺点。这种混合方法改进了之前的工作(Meinhardt等人,2022年),并采用神经网络为优化算法预测初始参数,优化算法之后只需对参数进行微调。我们展示了构建数据集和实验数据集的结果,并在运行时间和准确性方面都取得了改进。