Firkins J L, Henderson E L, Duan H, Pope P B
Department of Animal Sciences, The Ohio State University, Columbus, OH 43210.
Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia 4102.
J Dairy Sci. 2025 Jul;108(7):7511-7529. doi: 10.3168/jds.2024-25863. Epub 2024 Dec 17.
Although cellulose has received the most attention, further research is needed for a complete comprehension of other fiber components in forage and nonforage fiber sources corresponding to the array of enzymes needed for depolymerization and resulting fermentation of sugars. Carbohydrate-active enzymes (CAZymes) have been described in detail herein, although new information will no doubt accumulate in the future. Known CAZymes are attributed to taxa that are easily detected via 16S rRNA gene profiling techniques, but such approaches have limitations. We describe how closely related species or strains expand into different niches depending on diet and the dynamic availability of remaining fibrous substrates. Moreover, expression of CAZymes and other enzymes such as in fermentation pathways can shift among strains and even within strains over time of incubation. We describe unique fibrolytic components of bacteria, protozoa, and fungi and emphasize the development of consortia that efficiently increase neutral detergent fiber degradability (NDFD). For example, more powerful genome-centric functional omics approaches combined with expanded bioinformatics and network analyses are needed to expand our current understanding of ruminal function and the bottlenecks that lead to among-study variation in NDFD. Specific examples highlighted include our lack of fundamental understanding why starch limits NDFD, whereas moderate inclusion of rumen-degraded protein, certain supplemental fatty acids (especially palmitic acid), and supplemental sugars sometimes stimulates NDFD. Current and future research must uncover deeper complexity in the rumen microbiome through a combination of approaches described herein to be followed by validation using novel cultivation studies and, ultimately, NDFD measured in vivo for integration with ruminant productivity traits.
尽管纤维素受到了最多关注,但要全面理解饲料和非饲料纤维来源中的其他纤维成分,还需要进一步研究,这些成分对应着解聚所需的一系列酶以及糖的后续发酵过程。本文已详细描述了碳水化合物活性酶(CAZymes),不过未来无疑还会积累新的信息。已知的CAZymes可归因于通过16S rRNA基因分析技术易于检测的分类群,但此类方法存在局限性。我们描述了亲缘关系相近的物种或菌株如何根据饮食以及剩余纤维底物的动态可利用性扩展到不同的生态位。此外,CAZymes和其他酶(如发酵途径中的酶)的表达会随着培养时间在菌株之间甚至菌株内部发生变化。我们描述了细菌、原生动物和真菌独特的纤维分解成分,并强调了能有效提高中性洗涤纤维降解率(NDFD)的菌群的发展。例如,需要更强大的以基因组为中心的功能组学方法,结合扩展的生物信息学和网络分析,来拓展我们目前对瘤胃功能以及导致NDFD研究间差异的瓶颈的理解。突出的具体例子包括,我们对淀粉为何限制NDFD缺乏基本认识,而适度添加瘤胃降解蛋白、某些补充脂肪酸(尤其是棕榈酸)和补充糖有时会刺激NDFD。当前和未来的研究必须通过本文所述的多种方法揭示瘤胃微生物组更深层次的复杂性,随后通过新的培养研究进行验证,并最终在体内测量NDFD,以便与反刍动物生产性能特征相结合。