Suppr超能文献

使用机器学习模型预测接受抗吸收治疗患者的药物相关性颌骨坏死

Prediction of Medication-Related Osteonecrosis of the Jaw in Patients Receiving Antiresorptive Therapy Using Machine Learning Models.

作者信息

Warin Kritsasith, Lochanachit Sirasit, Pavarangkoon Praphan, Techapanurak Engkarat, Somyanonthanakul Rachasak

机构信息

Assistant Professor, Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand.

Lecturer, School of Information Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.

出版信息

J Oral Maxillofac Surg. 2025 Mar;83(3):353-365. doi: 10.1016/j.joms.2024.11.013. Epub 2024 Dec 2.

Abstract

BACKGROUND

Medication-related osteonecrosis of the jaw (MRONJ) is a serious complication associated with the use of antiresorptive agents, impacting patient quality of life and treatment outcomes. Predictive modeling may aid in a better understanding of MRONJ development.

PURPOSE

The study aimed to evaluate machine learning (ML)-based models for predicting MRONJ in patients receiving antiresorptive therapy.

STUDY DESIGN, SETTING, SAMPLE: This retrospective in silico study analyzed electronic medical records from Thammasat University Hospital, covering the period from January 2012 to December 2022. The sample included subjects receiving antiresorptive therapy, excluding those with a history of radiation therapy or metastatic jaw disease.

PREDICTOR VARIABLES

The primary predictor variable was the predicted probability of MRONJ development from the ML models.

OUTCOME VARIABLES

The outcome variable was MRONJ status coded as present or absent based on chart review.

COVARIATES

Covariates included demographic data, MRONJ occurrence, location and staging of MRONJ, comorbidities, diseases related to antiresorptive agents, types of antiresorptive agents, therapy duration, concurrent medications, blood calcium levels, and dental factors.

ANALYSES

Model performance was assessed via accuracy, sensitivity, specificity, positive and negative predictive values, and the area under the receiver operating characteristic curve. Additionally, univariate and multivariate Cox regression analyses were conducted to identify factors significantly associated with MRONJ development. P ≤ .05 was statistically significant.

RESULTS

The study analyzed data from 5,305 subjects with a mean age of 75 ± 11.1 years, predominantly female. MRONJ was observed in 81 cases (1.5%), with a median time to development of 33 months (interquartile range = 3). Among the 6 models tested, the best-performing model had an accuracy of 0.95 and an area under the receiver operating characteristic curve of 0.89-0.90. Significant predictors identified through Cox regression included metabolic syndrome (hazard ratio = 14.064, 95% confidence interval = 1.111-178.067, P = .041) and patients receiving intravenous pamidronate (hazard ratio = 5.932, 95% confidence interval = 1.755-20.051, P = .004), indicating their association with MRONJ development.

CONCLUSIONS AND RELEVANCE

ML-based predictive and time-to-event models effectively predict MRONJ risk, aiding in the strategic prevention and management for patients undergoing antiresorptive therapy.

摘要

背景

药物相关性颌骨坏死(MRONJ)是与抗吸收剂使用相关的一种严重并发症,影响患者生活质量和治疗结果。预测模型可能有助于更好地理解MRONJ的发生发展。

目的

本研究旨在评估基于机器学习(ML)的模型对接受抗吸收治疗患者的MRONJ进行预测。

研究设计、设置、样本:这项回顾性虚拟研究分析了泰国法政大学医院2012年1月至2022年12月期间的电子病历。样本包括接受抗吸收治疗的受试者,排除有放射治疗史或颌骨转移性疾病的患者。

预测变量

主要预测变量是ML模型预测的MRONJ发生概率。

结果变量

结果变量是根据病历审查编码为存在或不存在的MRONJ状态。

协变量

协变量包括人口统计学数据、MRONJ的发生情况、MRONJ的部位和分期、合并症、与抗吸收剂相关的疾病、抗吸收剂类型、治疗持续时间、同时使用的药物、血钙水平和牙科因素。

分析

通过准确性、敏感性、特异性、阳性和阴性预测值以及受试者工作特征曲线下面积评估模型性能。此外,进行单变量和多变量Cox回归分析以确定与MRONJ发生显著相关的因素。P≤0.05具有统计学意义。

结果

该研究分析了5305名受试者的数据,平均年龄为75±11.1岁,以女性为主。81例(1.5%)观察到MRONJ,发生的中位时间为33个月(四分位间距=3)。在测试的6个模型中,表现最佳的模型准确率为0.95,受试者工作特征曲线下面积为0.89 - 0.90。通过Cox回归确定的显著预测因素包括代谢综合征(风险比=14.064,95%置信区间=1.111 - 178.067,P = 0.041)和接受静脉注射帕米膦酸的患者(风险比=5.932,95%置信区间=1.755 - 20.051,P = 0.004),表明它们与MRONJ的发生有关。

结论及相关性

基于ML的预测模型和事件发生时间模型能有效预测MRONJ风险,有助于对接受抗吸收治疗的患者进行战略预防和管理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验