Suppr超能文献

一种用于预测髋部骨折手术患者红细胞输注的可解释监督式机器学习模型。

An explainable and supervised machine learning model for prediction of red blood cell transfusion in patients during hip fracture surgery.

作者信息

Zhou Yongchang, Wang Suo, Wu Zhikun, Chen Weixing, Yang Dong, Chen Chaojin, Zhao Gaofeng, Hong Qingxiong

机构信息

Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510030, Guangdong, China.

Guangzhou University of Chinese Medicine, Guangzhou, 510030, Guangdong, China.

出版信息

BMC Anesthesiol. 2024 Dec 19;24(1):467. doi: 10.1186/s12871-024-02832-y.

Abstract

AIM

The study aimed to develop a predictive model with machine learning (ML) algorithm, to predict and manage the need for red blood cell (RBC) transfusion during hip fracture surgery.

METHODS

Data of 2785 cases that underwent hip fracture surgery from April 2016 to May 2022 were collected, covering demographics, medical history and comorbidities, type of surgery and preoperative laboratory results. The primary outcome was the intraoperative RBC transfusion. The predicting performance of six algorithms were respectively evaluated with the area under the receiver operating characteristic (AUROC). The SHapley Additive exPlanations (SHAP) package was applied to interpret the Random Forest (RF) model. Data from 122 patients at The Third Affiliated Hospital of Sun Yat-sen University were collected for external validation.

RESULTS

1417 patients (50.88%) were diagnosed with preoperative anemia (POA) and 209 patients (7.5%) received intraoperative RBC transfusion. Longer estimated duration of surgery, POA, older age, hypoproteinemia, and surgery of internal fixation were revealed as the top 5 important variables contributing to intraoperative RBC transfusion. Among the six ML models, the RF model performed the best, which achieved the highest AUC (0.887, CI 0.838 to 0.926) in the internal validation set. Further, it achieved a comparable AUC of 0.834(0.75, 0.911) in the external validation set.

CONCLUSION

Our study firstly demonstrated that the RF model with 10 common variables might predict intraoperative RBC transfusion in hip fracture patients.

摘要

目的

本研究旨在开发一种基于机器学习(ML)算法的预测模型,以预测和管理髋部骨折手术期间红细胞(RBC)输血的需求。

方法

收集了2016年4月至2022年5月期间接受髋部骨折手术的2785例患者的数据,包括人口统计学、病史和合并症、手术类型以及术前实验室检查结果。主要结局是术中红细胞输血。使用受试者操作特征曲线下面积(AUROC)分别评估六种算法的预测性能。应用SHapley加法解释(SHAP)软件包来解释随机森林(RF)模型。收集了中山大学附属第三医院122例患者的数据进行外部验证。

结果

1417例患者(50.88%)被诊断为术前贫血(POA),209例患者(7.5%)接受了术中红细胞输血。预计手术时间较长、POA、年龄较大、低蛋白血症和内固定手术被确定为导致术中红细胞输血的前5个重要变量。在六种机器学习模型中,RF模型表现最佳,在内部验证集中达到了最高的AUC(0.887,CI 0.838至0.926)。此外,它在外部验证集中的AUC为0.834(0.75,0.911),与之相当。

结论

我们的研究首次表明,具有10个常见变量的RF模型可能预测髋部骨折患者的术中红细胞输血情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b86/11656766/4c5bfcf70e02/12871_2024_2832_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验