Cerrato Giulia, Liu Peng, Zhao Liwei, Petrazzuolo Adriana, Humeau Juliette, Schmid Sophie Theresa, Abdellatif Mahmoud, Sauvat Allan, Kroemer Guido
Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Institut Universitaire de France, Sorbonne Université, Inserm U1138, Paris, France.
Onco-Pheno-Screen Platform, Centre de Recherche des Cordeliers, Paris, France.
Mol Cancer. 2024 Dec 20;23(1):275. doi: 10.1186/s12943-024-02189-3.
Immunogenic cell death (ICD) inducers are often identified in phenotypic screening campaigns by the release or surface exposure of various danger-associated molecular patterns (DAMPs) from malignant cells. This study aimed to streamline the identification of ICD inducers by leveraging cellular morphological correlates of ICD, specifically the condensation of nucleoli (CON).
We applied artificial intelligence (AI)-based imaging analyses to Cell Paint-stained cells exposed to drug libraries, identifying CON as a marker for ICD. CON was characterized using SYTO 14 fluorescent staining and holotomographic microscopy, and visualized by AI-deconvoluted transmitted light microscopy. A neural network-based quantitative structure-activity relationship (QSAR) model was trained to link molecular descriptors of compounds to the CON phenotype, and the classifier was validated using an independent dataset from the NCI-curated mechanistic collection of anticancer agents.
CON strongly correlated with the inhibition of DNA-to-RNA transcription. Cytotoxic drugs that inhibit RNA synthesis without causing DNA damage were as effective as conventional cytotoxicants in inducing ICD, as demonstrated by DAMPs release/exposure and vaccination efficacy in mice. The QSAR classifier successfully predicted drugs with a high likelihood of inducing CON.
We developed AI-based algorithms for predicting CON-inducing drugs based on molecular descriptors and their validation using automated micrographs analysis, offering a new approach for screening ICD inducers with minimized adverse effects in cancer therapy.
免疫原性细胞死亡(ICD)诱导剂通常在表型筛选活动中通过恶性细胞释放或表面暴露各种与危险相关的分子模式(DAMPs)来鉴定。本研究旨在通过利用ICD的细胞形态学相关性,特别是核仁凝聚(CON),来简化ICD诱导剂的鉴定。
我们将基于人工智能(AI)的成像分析应用于暴露于药物库的Cell Paint染色细胞,将CON鉴定为ICD的标志物。使用SYTO 14荧光染色和全层析显微镜对CON进行表征,并通过AI反卷积透射光显微镜进行可视化。训练了一个基于神经网络的定量构效关系(QSAR)模型,以将化合物的分子描述符与CON表型联系起来,并使用来自美国国立癌症研究所(NCI)整理的抗癌药物机制集合的独立数据集对分类器进行验证。
CON与DNA到RNA转录的抑制密切相关。抑制RNA合成而不引起DNA损伤的细胞毒性药物在诱导ICD方面与传统细胞毒性药物一样有效,这在小鼠体内的DAMPs释放/暴露和疫苗接种效果中得到了证明。QSAR分类器成功预测了具有高诱导CON可能性的药物。
我们开发了基于AI的算法,用于基于分子描述符预测诱导CON的药物,并使用自动显微照片分析对其进行验证,为在癌症治疗中筛选具有最小副作用的ICD诱导剂提供了一种新方法。