Suppr超能文献

放线菌素 D 抑制转录揭示了免疫原性细胞应激的一个新特征。

Inhibition of transcription by dactinomycin reveals a new characteristic of immunogenic cell stress.

机构信息

Equipe labellisée par la Ligue contre le Cancer, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Université de Paris, Paris, France.

Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France.

出版信息

EMBO Mol Med. 2020 May 8;12(5):e11622. doi: 10.15252/emmm.201911622. Epub 2020 Apr 23.

Abstract

Chemotherapy still constitutes the standard of care for the treatment of most neoplastic diseases. Certain chemotherapeutics from the oncological armamentarium are able to trigger pre-mortem stress signals that lead to immunogenic cell death (ICD), thus inducing an antitumor immune response and mediating long-term tumor growth reduction. Here, we used an established model, built on artificial intelligence to identify, among a library of 50,000 compounds, anticancer agents that, based on their molecular descriptors, were predicted to induce ICD. This algorithm led us to the identification of dactinomycin (DACT, best known as actinomycin D), a highly potent cytotoxicant and ICD inducer that mediates immune-dependent anticancer effects in vivo. Since DACT is commonly used as an inhibitor of DNA to RNA transcription, we investigated whether other experimentally established or algorithm-selected, clinically employed ICD inducers would share this characteristic. As a common leitmotif, a panel of pharmacological ICD stimulators inhibited transcription and secondarily translation. These results establish the inhibition of RNA synthesis as an initial event for ICD induction.

摘要

化疗仍然是大多数肿瘤疾病治疗的标准护理方法。肿瘤学武器库中的某些化疗药物能够引发预先存在的应激信号,导致免疫原性细胞死亡 (ICD),从而诱导抗肿瘤免疫反应并介导长期肿瘤生长减少。在这里,我们使用了一种基于人工智能的已建立模型,从 50,000 种化合物库中识别出基于其分子描述符预测可诱导 ICD 的抗癌剂。该算法使我们发现了放线菌素 D(DACT,通常称为更生霉素 D),这是一种高效的细胞毒性剂和 ICD 诱导剂,可在体内介导免疫依赖性抗癌作用。由于 DACT 通常用作 DNA 到 RNA 转录的抑制剂,我们研究了其他实验确定或算法选择的、临床上使用的 ICD 诱导剂是否会具有这种特性。作为一个共同的主题,一组药理学 ICD 刺激剂抑制转录,其次是翻译。这些结果确立了 RNA 合成的抑制作为 ICD 诱导的初始事件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4797/7207166/d3ac8131aa20/EMMM-12-e11622-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验