Suppr超能文献

基于分子组成的威士忌气味预测

Odor prediction of whiskies based on their molecular composition.

作者信息

Singh Satnam, Schicker Doris, Haug Helen, Sauerwald Tilman, Grasskamp Andreas T

机构信息

Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany.

Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

出版信息

Commun Chem. 2024 Dec 19;7(1):293. doi: 10.1038/s42004-024-01373-2.

Abstract

Aroma compositions are usually complex mixtures of odor-active compounds exhibiting diverse molecular structures. Due to chemical interactions of these compounds in the olfactory system, assessing or even predicting the olfactory quality of such mixtures is a difficult task, not only for statistical models, but even for trained assessors. Here, we combine fast automated analytical assessment tools with human sensory data of 11 experienced panelists and machine learning algorithms. Using 16 previously analyzed whisky samples (American or Scotch origin), we apply the linear classifier OWSum to distinguish the samples based on their detected molecules and to gain insights into the key molecular structure characteristics and odor descriptors for sample type. Moreover, we use OWSum and a Convolutional Neural Network (CNN) architecture to classify the five most relevant odor attributes of each sample and predict their sensory scores with promising accuracies (up to F1: 0.71, MCC: 0.68, ROCAUC: 0.78). The predictions outperform the inter-panelist agreement and thus demonstrate previously impossible data-driven sensory assessment in mixtures.

摘要

香气成分通常是具有不同分子结构的气味活性化合物的复杂混合物。由于这些化合物在嗅觉系统中的化学相互作用,评估甚至预测此类混合物的嗅觉质量是一项艰巨的任务,不仅对于统计模型而言如此,对于训练有素的评估人员来说亦是如此。在此,我们将快速自动化分析评估工具与11位经验丰富的小组成员的人类感官数据以及机器学习算法相结合。使用16个先前分析过的威士忌样品(美国或苏格兰产地),我们应用线性分类器OWSum根据检测到的分子对样品进行区分,并深入了解样品类型的关键分子结构特征和气味描述符。此外,我们使用OWSum和卷积神经网络(CNN)架构对每个样品的五个最相关气味属性进行分类,并以可观的准确率预测其感官评分(F1高达0.71,MCC为0.68,ROCAUC为0.78)。这些预测优于小组成员之间的一致性,从而证明了以前在混合物中无法实现的数据驱动感官评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c335/11659623/6ac7e757a6ba/42004_2024_1373_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验