Suppr超能文献

深度嗅觉:一种可预测人类嗅觉感知的等变卷积神经网络

DeepNose: An Equivariant Convolutional Neural Network Predictive Of Human Olfactory Percepts.

作者信息

Shuvaev Sergey, Tran Khue, Samoilova Khristina, Mascart Cyrille, Koulakov Alexei

机构信息

Department of Neuroscience, Cold Spring Harbor Laboratory, Cold Spring Harbor, USA.

出版信息

ArXiv. 2024 Dec 11:arXiv:2412.08747v1.

Abstract

The olfactory system employs responses of an ensemble of odorant receptors (ORs) to sense molecules and to generate olfactory percepts. Here we hypothesized that ORs can be viewed as 3D spatial filters that extract molecular features relevant to the olfactory system, similarly to the spatio-temporal filters found in other sensory modalities. To build these filters, we trained a convolutional neural network (CNN) to predict human olfactory percepts obtained from several semantic datasets. Our neural network, the DeepNose, produced responses that are approximately invariant to the molecules' orientation, due to its equivariant architecture. Our network offers high-fidelity perceptual predictions for different olfactory datasets. In addition, our approach allows us to identify molecular features that contribute to specific perceptual descriptors. Because the DeepNose network is designed to be aligned with the biological system, our approach predicts distinct perceptual qualities for different stereoisomers. The architecture of the DeepNose relying on the processing of several molecules at the same time permits inferring the perceptual quality of odor mixtures. We propose that the DeepNose network can use 3D molecular shapes to generate high-quality predictions for human olfactory percepts and help identify molecular features responsible for odor quality.

摘要

嗅觉系统利用一组气味受体(OR)的反应来感知分子并产生嗅觉感知。在此,我们假设OR可被视为3D空间滤波器,用于提取与嗅觉系统相关的分子特征,这类似于在其他感觉模态中发现的时空滤波器。为构建这些滤波器,我们训练了一个卷积神经网络(CNN)来预测从几个语义数据集获得的人类嗅觉感知。我们的神经网络DeepNose由于其等变架构,产生的反应对分子的方向大致不变。我们的网络为不同的嗅觉数据集提供高保真的感知预测。此外,我们的方法使我们能够识别有助于特定感知描述符的分子特征。由于DeepNose网络设计为与生物系统对齐,我们的方法能为不同的立体异构体预测出不同的感知特性。DeepNose的架构依赖于同时处理多个分子,这使得我们能够推断气味混合物的感知质量。我们提出,DeepNose网络可以利用3D分子形状为人类嗅觉感知生成高质量的预测,并有助于识别负责气味质量的分子特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8cf/11661275/432999bedf3a/nihpp-2412.08747v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验