Suppr超能文献

在……中重组附加型载体上的复杂遗传功能

Restructuring a Complex Genetic Function on Episomal Vectors in .

作者信息

Bertelsen Andreas B, Ehrmann Anja K, Bayer Carolyn, Batth Tanveer S, Olsen Jesper V, Nørholm Morten H H

机构信息

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark.

The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen N 2200, Denmark.

出版信息

ACS Synth Biol. 2025 Jan 17;14(1):161-170. doi: 10.1021/acssynbio.4c00533. Epub 2024 Dec 19.

Abstract

Genetic functions have evolved over long timescales and can be encoded by multiple genes dispersed in different locations in genomes, and although contemporary molecular biology enables control over single genes, more complex genetic functions remain challenging. Here, we study the restructuring and mobilization of a complex genetic function encoded by 10 genes, originally expressed from four operons and two loci on the genome. We observe subtle phenotypic differences and reduced fitness when expressed from episomal DNA and demonstrate that mutations in the transcriptional machinery are necessary for successful implementation in different bacteria. The work provides new approaches for advanced genome editing and constitutes a first step toward modularization and genome-level engineering of complex genetic functions.

摘要

遗传功能在很长的时间尺度上不断进化,可由分散在基因组不同位置的多个基因编码,尽管当代分子生物学能够控制单个基因,但更复杂的遗传功能仍然具有挑战性。在这里,我们研究了由10个基因编码的复杂遗传功能的重组和动员,这些基因最初由基因组上的四个操纵子和两个位点表达。我们观察到从游离DNA表达时存在细微的表型差异和适应性降低,并证明转录机制中的突变是在不同细菌中成功实现的必要条件。这项工作为先进的基因组编辑提供了新方法,并朝着复杂遗传功能的模块化和基因组水平工程迈出了第一步。

相似文献

1
Restructuring a Complex Genetic Function on Episomal Vectors in .
ACS Synth Biol. 2025 Jan 17;14(1):161-170. doi: 10.1021/acssynbio.4c00533. Epub 2024 Dec 19.
2
A novel approach for Escherichia coli genome editing combining in vivo cloning and targeted long-length chromosomal insertion.
J Microbiol Methods. 2016 Nov;130:83-91. doi: 10.1016/j.mimet.2016.08.024. Epub 2016 Aug 25.
3
Broad host range plasmids carrying the Escherichia coli lactose and galactose operons.
FEMS Microbiol Lett. 1992 Aug 15;74(2-3):271-6. doi: 10.1016/0378-1097(92)90441-p.
5
A double-locus scarless genome editing system in Escherichia coli.
Biotechnol Lett. 2020 Aug;42(8):1457-1465. doi: 10.1007/s10529-020-02856-7. Epub 2020 Mar 4.
7
A series of template plasmids for Escherichia coli genome engineering.
J Microbiol Methods. 2016 Jun;125:49-57. doi: 10.1016/j.mimet.2016.04.006. Epub 2016 Apr 9.
8
Engineering adaptive alleles for Escherichia coli growth on sucrose using the EasyGuide CRISPR system.
J Biotechnol. 2025 Jul;403:126-139. doi: 10.1016/j.jbiotec.2025.04.016. Epub 2025 Apr 17.
9
CIFR (Clone-Integrate-Flip-out-Repeat): A toolset for iterative genome and pathway engineering of Gram-negative bacteria.
Metab Eng. 2025 Mar;88:180-195. doi: 10.1016/j.ymben.2025.01.001. Epub 2025 Jan 6.
10
Letting Escherichia coli teach me about genome engineering.
Genetics. 2009 Dec;183(4):1205-14. doi: 10.1534/genetics.109.110007.

本文引用的文献

3
Ultra-fast label-free quantification and comprehensive proteome coverage with narrow-window data-independent acquisition.
Nat Biotechnol. 2024 Dec;42(12):1855-1866. doi: 10.1038/s41587-023-02099-7. Epub 2024 Feb 1.
4
Tearing up the traditional biotech playbook.
Nat Biotechnol. 2024 Jan;42(1):1. doi: 10.1038/s41587-023-02119-6.
5
Efficient Bacterial Genome Engineering throughout the Central Dogma Using the Dual-Selection Marker .
ACS Synth Biol. 2022 Oct 21;11(10):3440-3450. doi: 10.1021/acssynbio.2c00345. Epub 2022 Oct 7.
6
Synthetic chromosomes, genomes, viruses, and cells.
Cell. 2022 Jul 21;185(15):2708-2724. doi: 10.1016/j.cell.2022.06.046.
7
BW25113 Competent Cells Prepared Using a Simple Chemical Method Have Unmatched Transformation and Cloning Efficiencies.
Front Microbiol. 2022 Mar 24;13:838698. doi: 10.3389/fmicb.2022.838698. eCollection 2022.
8
Prediction of Novel Bacterial Small RNAs From RIL-Seq RNA-RNA Interaction Data.
Front Microbiol. 2021 May 21;12:635070. doi: 10.3389/fmicb.2021.635070. eCollection 2021.
9
Rapid Genome Engineering of Assisted by Fluorescent Markers and Tractable Curing of Plasmids.
Bio Protoc. 2021 Feb 20;11(4):e3917. doi: 10.21769/BioProtoc.3917.
10
Building genomes to understand biology.
Nat Commun. 2020 Dec 2;11(1):6177. doi: 10.1038/s41467-020-19753-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验