Suppr超能文献

肠内分泌细胞感知蔗糖并通过胰岛素信号改变肠神经元兴奋性。

Enteroendocrine Cells Sense Sucrose and Alter Enteric Neuron Excitability via Insulin Signaling.

作者信息

Snyder Jessica R, Ahmed Minhal, Bhave Sukhada, Hotta Ryo, Koppes Ryan A, Goldstein Allan M, Koppes Abigail N

机构信息

Department of Bioengineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA.

Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA.

出版信息

Adv Biol (Weinh). 2025 Mar;9(3):e2300566. doi: 10.1002/adbi.202300566. Epub 2024 Dec 20.

Abstract

Neurosensory circuits of the gastrointestinal tract sense microbial and nutrient changes in the gut; however, studying these circuits in vivo is hindered by invasive techniques and ethical concerns. Here, an in vitro model of enteroendocrine cells (EECs) and calcium reporting enteric neurons (ENs) is established and validated for functional signaling. Both mechanical and sucrose stimulation of co-cultures increased the percentage of neurons undergoing a calcium flux, indicating an action potential. Neuronal activation is blocked with either a piezo or insulin receptor blocker. At baseline, a flow only stimulus elicited 51.9% of neurons to activate in co-culture, which is decreased to 15.1% with a piezo blocker. Piezo blocked and sucrose stimulated EECs increased neuronal activation to 43.9%, and an insulin blocker reduced response to 12.4%. Since a cell line is used to model the EEC in the previous experiments, primary rat duodenal epithelium enriched for EECs are also stimulated and found to produced measurable insulin. This work shows the ability of EECs to produce insulin and for ENs to sense insulin. These results inspire further work on how insulin production outside the pancreas effects diabetes, insulin as a neurotransmitter, and exploration of additional nutritional and microbiotic stimuli on enteroendocrine-to-neuronal signaling.

摘要

胃肠道的神经感觉回路可感知肠道内的微生物和营养变化;然而,体内研究这些回路受到侵入性技术和伦理问题的阻碍。在此,建立了肠内分泌细胞(EECs)和钙报告肠神经元(ENs)的体外模型,并对其功能信号进行了验证。对共培养物进行机械刺激和蔗糖刺激均增加了经历钙通量的神经元百分比,表明存在动作电位。神经元激活被压电蛋白或胰岛素受体阻滞剂阻断。在基线时,仅流动刺激在共培养物中引起51.9%的神经元激活,使用压电蛋白阻滞剂后降至15.1%。被压电蛋白阻断但经蔗糖刺激的EECs使神经元激活增加到43.9%,而胰岛素阻滞剂使反应降低到12.4%。由于在先前实验中使用细胞系对EEC进行建模,因此对富含EECs的原代大鼠十二指肠上皮也进行了刺激,发现其可产生可测量的胰岛素。这项工作展示了EECs产生胰岛素以及ENs感知胰岛素的能力。这些结果激发了关于胰腺外胰岛素产生如何影响糖尿病、胰岛素作为神经递质以及探索其他营养和微生物刺激对肠内分泌-神经元信号传导影响的进一步研究。

相似文献

1
Enteroendocrine Cells Sense Sucrose and Alter Enteric Neuron Excitability via Insulin Signaling.
Adv Biol (Weinh). 2025 Mar;9(3):e2300566. doi: 10.1002/adbi.202300566. Epub 2024 Dec 20.
2
Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways.
Cell Host Microbe. 2021 Feb 10;29(2):179-196.e9. doi: 10.1016/j.chom.2020.11.011. Epub 2020 Dec 21.
3
Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility.
Nat Rev Gastroenterol Hepatol. 2020 Jun;17(6):338-351. doi: 10.1038/s41575-020-0271-2. Epub 2020 Mar 9.
4
Effects of gastrointestinal inflammation on enteroendocrine cells and enteric neural reflex circuits.
Auton Neurosci. 2006 Jun 30;126-127:250-7. doi: 10.1016/j.autneu.2006.02.015. Epub 2006 Apr 17.
5
Enteroendocrine Regulation of Nutrient Absorption.
J Nutr. 2020 Jan 1;150(1):10-21. doi: 10.1093/jn/nxz191.
6
Neuropods.
Cell Mol Gastroenterol Hepatol. 2019;7(4):739-747. doi: 10.1016/j.jcmgh.2019.01.006. Epub 2019 Jan 30.
7
Enteroendocrine cells: a review of their role in brain-gut communication.
Neurogastroenterol Motil. 2016 May;28(5):620-30. doi: 10.1111/nmo.12754. Epub 2015 Dec 21.
8
Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats.
Gastroenterology. 2010 May;138(5):1772-82. doi: 10.1053/j.gastro.2010.01.053. Epub 2010 Feb 10.
9
Cholinergic activation of enteric glia is a physiological mechanism that contributes to the regulation of gastrointestinal motility.
Am J Physiol Gastrointest Liver Physiol. 2018 Oct 1;315(4):G473-G483. doi: 10.1152/ajpgi.00155.2018. Epub 2018 Jun 21.
10
Intestinal enteroendocrine cells rely on ryanodine and IP calcium store receptors for mechanotransduction.
J Physiol. 2023 Jan;601(2):287-305. doi: 10.1113/JP283383. Epub 2022 Dec 13.

引用本文的文献

本文引用的文献

1
Modeling gut neuro-epithelial connections in a novel microfluidic device.
Microsyst Nanoeng. 2023 Nov 14;9:144. doi: 10.1038/s41378-023-00615-y. eCollection 2023.
2
Transepithelial Effect of Probiotics in a Novel Model of Gut Lumen to Nerve Signaling.
Nutrients. 2022 Nov 17;14(22):4856. doi: 10.3390/nu14224856.
3
The preference for sugar over sweetener depends on a gut sensor cell.
Nat Neurosci. 2022 Feb;25(2):191-200. doi: 10.1038/s41593-021-00982-7. Epub 2022 Jan 13.
4
Insulin is expressed by enteroendocrine cells during human fetal development.
Nat Med. 2021 Dec;27(12):2104-2107. doi: 10.1038/s41591-021-01586-1. Epub 2021 Dec 9.
5
GLP-1 receptor agonists: an updated review of head-to-head clinical studies.
Ther Adv Endocrinol Metab. 2021 Mar 9;12:2042018821997320. doi: 10.1177/2042018821997320. eCollection 2021.
6
Pancreatic β-Cells Communicate With Vagal Sensory Neurons.
Gastroenterology. 2021 Feb;160(3):875-888.e11. doi: 10.1053/j.gastro.2020.10.034. Epub 2020 Oct 26.
7
Type 2 diabetes is associated with impaired jejunal enteroendocrine GLP-1 cell lineage in human obesity.
Int J Obes (Lond). 2021 Jan;45(1):170-183. doi: 10.1038/s41366-020-00694-1. Epub 2020 Oct 9.
8
9
GLP 1 Regulated Intestinal Cell's Insulin Expression and Selfadaptation before the Onset of Type 2 Diabetes.
Adv Pharm Bull. 2019 Jun;9(2):325-330. doi: 10.15171/apb.2019.039. Epub 2019 Jun 1.
10
Bioengineered in vitro enteric nervous system.
J Tissue Eng Regen Med. 2019 Sep;13(9):1712-1723. doi: 10.1002/term.2926. Epub 2019 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验