Long Shibin, Xia Yan, Liang Lifeng, Yang Ying, Xie Hailiang, Wang Xiaokai
Department of Data Science, 01Life Institute, Shenzhen 518000, China.
State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China.
NAR Genom Bioinform. 2024 Dec 18;6(4):lqae177. doi: 10.1093/nargab/lqae177. eCollection 2024 Dec.
The development of multi-omics technologies has generated an abundance of biological datasets, providing valuable resources for investigating potential relationships within complex biological systems. However, most correlation analysis tools face computational challenges when dealing with these high-dimensional datasets containing millions of features. Here, we introduce pyNetCor, a fast and scalable tool for constructing correlation networks on large-scale and high-dimensional data. PyNetCor features optimized algorithms for both full correlation coefficient matrix computation and top-k correlation search, outperforming other tools in the field in terms of runtime and memory consumption. It utilizes a linear interpolation strategy to rapidly estimate values and achieve false discovery rate control, demonstrating a speedup of over 110 times compared to existing methods. Overall, pyNetCor supports large-scale correlation analysis, a crucial foundational step for various bioinformatics workflows, and can be easily integrated into downstream applications to accelerate the process of extracting biological insights from data.
多组学技术的发展产生了大量的生物学数据集,为研究复杂生物系统中的潜在关系提供了宝贵资源。然而,大多数相关性分析工具在处理这些包含数百万个特征的高维数据集时面临计算挑战。在此,我们介绍pyNetCor,这是一种用于在大规模和高维数据上构建相关网络的快速且可扩展的工具。PyNetCor具有针对全相关系数矩阵计算和前k个相关性搜索的优化算法,在运行时间和内存消耗方面优于该领域的其他工具。它采用线性插值策略来快速估计值并实现错误发现率控制,与现有方法相比,速度提高了110倍以上。总体而言,pyNetCor支持大规模相关性分析,这是各种生物信息学工作流程的关键基础步骤,并且可以轻松集成到下游应用程序中,以加速从数据中提取生物学见解的过程。