Suppr超能文献

一个用于快速和可扩展地计算具有生物学意义的个体特定网络的 Python 库。

A python library for the fast and scalable computation of biologically meaningful individual specific networks.

机构信息

BIO3 - Systems Medicine Lab, Department of Human Genetics, KU Leuven, Leuven, Belgium.

VIB Technologies, VIB, Ghent, Belgium.

出版信息

Sci Rep. 2024 Aug 6;14(1):18243. doi: 10.1038/s41598-024-69067-2.

Abstract

Individual Specific Networks (ISNs) are a tool used in computational biology to infer Individual Specific relationships between biological entities from omics data. ISNs provide insights into how the interactions among these entities affect their respective functions. To address the scarcity of solutions for efficiently computing ISNs on large biological datasets, we present ISN-tractor, a data-agnostic, highly optimized Python library to build and analyse ISNs. ISN-tractor demonstrates superior scalability and efficiency in generating Individual Specific Networks (ISNs) when compared to existing methods such as LionessR, both in terms of time and memory usage, allowing ISNs to be used on large datasets. We show how ISN-tractor can be applied to real-life datasets, including The Cancer Genome Atlas (TCGA) and HapMap, showcasing its versatility. ISN-tractor can be used to build ISNs from various -omics data types, including transcriptomics, proteomics, and genotype arrays, and can detect distinct patterns of gene interactions within and across cancer types. We also show how Filtration Curves provided valuable insights into ISN characteristics, revealing topological distinctions among individuals with different clinical outcomes. Additionally, ISN-tractor can effectively cluster populations based on genetic relationships, as demonstrated with Principal Component Analysis on HapMap data.

摘要

个体特异网络(ISNs)是计算生物学中的一种工具,用于从组学数据中推断生物实体之间的个体特异关系。ISNs 提供了关于这些实体之间的相互作用如何影响它们各自功能的见解。为了解决在大型生物数据集上高效计算 ISNs 的解决方案稀缺的问题,我们提出了 ISN-tractor,这是一个数据不可知的、高度优化的 Python 库,用于构建和分析 ISNs。与 LionessR 等现有方法相比,ISN-tractor 在生成个体特异网络(ISNs)方面具有更好的可扩展性和效率,无论是在时间还是内存使用方面,都允许在大型数据集上使用 ISNs。我们展示了如何将 ISN-tractor 应用于真实数据集,包括癌症基因组图谱(TCGA)和 HapMap,展示了其多功能性。ISN-tractor 可用于从各种组学数据类型(包括转录组学、蛋白质组学和基因型数组)构建 ISNs,并可检测癌症类型内和跨癌症类型的基因相互作用的不同模式。我们还展示了滤过曲线如何为 ISN 特征提供有价值的见解,揭示了不同临床结局个体之间的拓扑差异。此外,ISN-tractor 可以根据遗传关系有效地对人群进行聚类,如在 HapMap 数据上进行主成分分析所示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5fd/11303555/29d4aa466925/41598_2024_69067_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验