Suppr超能文献

运用多变量方法对德国职场健康促进中不参与情况的代表性分析。

A Representative Analysis of Nonparticipation in Workplace Health Promotion in Germany Using Multivariable Methods.

作者信息

Pache Birgit, Herbig Britta, Nowak Dennis, Janssen Christian

机构信息

Munich University of Applied Sciences, Munich, Germany.

Institute and Clinic for Occupational, Social and Environmental Medicine, LMU University Hospital, LMU Munich, Munich, Germany.

出版信息

Int J Public Health. 2024 Dec 5;69:1607261. doi: 10.3389/ijph.2024.1607261. eCollection 2024.

Abstract

OBJECTIVES

Studies have identified sociodemographic and socioeconomic factors that promote participation in workplace health promotion activities. The present study therefore focuses on what influences nonparticipation within a representative sample of the German population.

METHODS

In the analysis of possible factors influencing nonparticipation, company characteristics are accounted for in addition to sociodemographic and health behaviour-related variables. The data used for the analysis are from the GEDA study 2014/2015-EHIS of the Robert Koch Institute in Berlin.

RESULTS

Age largely increased the probability of nonparticipation (OR: between 1.30 and 1.92, p: between <0.001 and 0.033). Other possible influencing factors, such as weight, smoking status, alcohol consumption, exercise status and diet, seemed to play a rather minor role in the present analysis. Self-rated belonging to a certain socioeconomic status group also had a significant influence (OR: 0.76, p: <0.001).

CONCLUSION

The influencing factors seem to be of a sociodemographic and socioeconomic nature. These determinants should be accounted for to reduce nonparticipation. However, a comparison with current or longitudinal data would be needed to prove to what extent the results are still valid or influenced by a cohort effect.

摘要

目标

研究已经确定了促进参与职场健康促进活动的社会人口统计学和社会经济因素。因此,本研究聚焦于在德国人口的代表性样本中,是什么因素影响了不参与情况。

方法

在分析影响不参与的可能因素时,除了社会人口统计学和与健康行为相关的变量外,还考虑了公司特征。用于分析的数据来自柏林罗伯特·科赫研究所的2014/2015 - EHIS德国健康访谈与体检调查(GEDA)研究。

结果

年龄在很大程度上增加了不参与的可能性(优势比:在1.30至1.92之间,p值:在<0.001至0.033之间)。在本分析中,其他可能的影响因素,如体重、吸烟状况、饮酒量、运动状况和饮食,似乎起到的作用较小。自我评定属于某个社会经济地位群体也有显著影响(优势比:0.76,p值:<0.001)。

结论

影响因素似乎具有社会人口统计学和社会经济性质。为了减少不参与情况,应该考虑这些决定因素。然而,需要与当前数据或纵向数据进行比较,以证明结果在多大程度上仍然有效或受到队列效应的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6931/11655221/18a6d554a0d7/ijph-69-1607261-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验