Suppr超能文献

血管生成和干性相关基因在卵巢癌预后及免疫治疗中的价值综合分析

Comprehensive analysis of the value of angiogenesis and stemness-related genes in the prognosis and immunotherapy of ovarian cancer.

作者信息

Zhou Linsen, Min Yu, Cao Qiqi, Tan Xun, Cui Yongfen, Wang Jiawei

机构信息

Department of Gynecology, Affiliated Hospital of Nantong University, Nantong, China.

Department of Ultrasound, Nantong Second People's Hospital, Nantong, Jiangsu, People's Republic of China.

出版信息

Biofactors. 2025 Jan-Feb;51(1):e2155. doi: 10.1002/biof.2155.

Abstract

Tumor angiogenesis and the presence of cancer stem cells (CSCs) are critical characteristics of tumors. Previous research has demonstrated that cancer stem cells promote tumor angiogenesis, while increased vascularity, in turn, fosters the growth of cancer stem cells. This creates a detrimental cycle that contributes to tumor progression. However, studies investigating the angiogenesis and stemness characteristics in ovarian cancer (OV) are limited. In this study, we employed cluster analysis and LASSO methods to assess the significance of angiogenesis- and stemness-related genes in the efficacy of OV immunotherapy. Through multivariate Cox regression analysis and Friends analysis, we identified TNFSF11 as the most significant prognostic gene associated with angiogenesis and stemness. Additionally, molecular docking results confirmed that TNFSF11 exhibits a high affinity for sorafenib and sunitinib. In summary, for the first time, we conducted a comprehensive analysis of the roles of angiogenesis and stemness-related genes in the prognosis and immunotherapy of OV patients, revealing TNFSF11 as a novel therapeutic target.

摘要

肿瘤血管生成和癌症干细胞(CSCs)的存在是肿瘤的关键特征。先前的研究表明,癌症干细胞促进肿瘤血管生成,而增加的血管生成反过来又促进癌症干细胞的生长。这形成了一个有害的循环,促进了肿瘤进展。然而,关于卵巢癌(OV)血管生成和干性特征的研究有限。在本研究中,我们采用聚类分析和LASSO方法来评估血管生成和干性相关基因在OV免疫治疗疗效中的意义。通过多变量Cox回归分析和Friends分析,我们确定TNFSF11是与血管生成和干性相关的最显著预后基因。此外,分子对接结果证实TNFSF11对索拉非尼和舒尼替尼具有高亲和力。总之,我们首次全面分析了血管生成和干性相关基因在OV患者预后和免疫治疗中的作用,揭示TNFSF11是一个新的治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5113/11659921/45941f046f54/BIOF-51-0-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验