Recktenwald Matthias, Bhattacharya Ritankar, Benmassaoud Mohammed Mehdi, MacAulay James, Chauhan Varun M, Davis Leah, Hutt Evan, Galie Peter A, Staehle Mary M, Daringer Nichole M, Pantazes Robert J, Vega Sebastián L
Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States.
Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States.
ACS Synth Biol. 2025 Jul 18;14(7):2494-2513. doi: 10.1021/acssynbio.4c00482. Epub 2024 Dec 20.
Transmembrane receptors that endow mammalian cells with the ability to sense and respond to biomaterial-bound ligands will prove instrumental in bridging the fields of synthetic biology and biomaterials. Materials formed with thiol-norbornene chemistry are amenable to thiol-peptide patterning, and this study reports the rational design of synthetic receptors that reversibly activate cellular responses based on peptide-ligand recognition. This transmembrane receptor platform, termed Extracellular Peptide-ligand Dimerization Actuator (EPDA), consists of stimulatory or inhibitory receptor pairs that come together upon extracellular peptide dimer binding with corresponding monobody receptors. Intracellularly, phosphorylate a substrate that merges two protein halves, whereas revert split proteins back to their unmerged, inactive state via substrate dephosphorylation. To identify ligand-receptor pairs, over 2000 candidate monobodies were built using PETEI, a novel computational algorithm we developed. The top 30 monobodies based on predicted peptide binding affinity were tested experimentally, and monobodies that induced the highest change in protein merging (green fluorescent protein, GFP) were incorporated in the final EPDA receptor design. In soluble form, stimulatory peptides induce intracellular GFP merging in a time- and concentration-dependent manner, and varying levels of green fluorescence were observed based on stimulatory and inhibitory peptide-ligand dosing. EPDA-programmed cells encapsulated in thiol-norbornene hydrogels patterned with stimulatory and inhibitory domains exhibited 3D activation or deactivation based on their location within peptide-patterned hydrogels. EPDA receptors can recognize a myriad of peptide-ligands bound to 3D materials, can reversibly induce cellular responses beyond fluorescence, and are widely applicable in biological research and regenerative medicine.
赋予哺乳动物细胞感知和响应生物材料结合配体能力的跨膜受体,将被证明在连接合成生物学和生物材料领域中发挥重要作用。由硫醇-降冰片烯化学形成的材料适合硫醇-肽图案化,本研究报告了基于肽-配体识别可逆激活细胞反应的合成受体的合理设计。这个跨膜受体平台,称为细胞外肽-配体二聚化激活器(EPDA),由刺激或抑制性受体对组成,它们在细胞外肽二聚体与相应的单克隆抗体受体结合时聚集在一起。在细胞内, 磷酸化一个将两个蛋白质半体合并的底物,而 通过底物去磷酸化将分裂的蛋白质恢复到未合并的无活性状态。为了识别配体-受体对,使用我们开发的一种新的计算算法PETEI构建了2000多个候选单克隆抗体。基于预测的肽结合亲和力对前30个单克隆抗体进行了实验测试,并将诱导蛋白质合并(绿色荧光蛋白,GFP)变化最大的单克隆抗体纳入最终的EPDA受体设计中。以可溶形式,刺激肽以时间和浓度依赖性方式诱导细胞内GFP合并,并且根据刺激和抑制性肽-配体剂量观察到不同水平的绿色荧光。封装在具有刺激和抑制结构域图案化的硫醇-降冰片烯水凝胶中的EPDA编程细胞,根据其在肽图案化水凝胶中的位置表现出3D激活或失活。EPDA受体可以识别与3D材料结合的无数肽-配体,可以可逆地诱导除荧光之外的细胞反应,并且广泛应用于生物学研究和再生医学。