Sekhon Harsimranjit, Ha Jeung-Hoi, Loh Stewart N
Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
Bio Protoc. 2025 Mar 20;15(6):e5239. doi: 10.21769/BioProtoc.5239.
Fluorescent protein biosensors (FPBs) that turn on-go from dark to bright upon binding their ligands-enable the detection of targets in living cells with high sensitivity and spatial localization. Several approaches exist for creating turn-on FPBs, most notably the method that gave rise to the GCaMP family of genetically encoded calcium indicators. However, it remains challenging to modify these sensors to recognize new ligands. We recently developed adaptable turn-on maturation (ATOM) biosensors, in which target recognition by a small binding domain triggers chromophore maturation in the fluorescent protein to which it is attached. ATOM sensors are advantageous because they are generalizable (by virtue of the monobody and nanobody binding domains) and modular (binding domains and fluorescent proteins of various colors can be mixed and matched for multiplexed imaging), capable of detecting endogenously expressed proteins, and able to function in subcellular compartments including the cytoplasm, nucleus, endoplasmic reticulum, and mitochondria. The protocols herein detail how to design, clone, and screen new ATOM sensors for detecting targets of choice. The starting materials are the genes encoding for a monobody or nanobody and for a cyan, yellow, or red fluorescent protein. We also present general guidelines for creating ATOM sensors using binding domains other than nanobodies and monobodies. Key features • Creation of six-member (monobody-based) and nine-member (nanobody-based) plasmid libraries encoding ATOM biosensors. • Targeting ATOM biosensors to subcellular compartments using peptide tags. • Screening for biosensor activity in human cells and quantifying turn-on using a fluorescence microscope and freeware software packages. • The most time-consuming step is ATOM gene construction, which can be bypassed by commercial gene synthesis.
荧光蛋白生物传感器(FPBs)在与配体结合时会从暗变亮,能够在活细胞中高灵敏度地检测目标并进行空间定位。创建开启式FPBs有多种方法,最著名的是产生了基因编码钙指示剂GCaMP家族的方法。然而,对这些传感器进行改造以识别新配体仍然具有挑战性。我们最近开发了适应性开启成熟(ATOM)生物传感器,其中一个小的结合域对目标的识别会触发与其相连的荧光蛋白中的发色团成熟。ATOM传感器具有优势,因为它们具有通用性(借助单域抗体和纳米抗体结合域)和模块化(各种颜色的结合域和荧光蛋白可以混合搭配用于多重成像),能够检测内源性表达的蛋白质,并且能够在包括细胞质、细胞核、内质网和线粒体在内的亚细胞区室中发挥作用。本文的方案详细介绍了如何设计、克隆和筛选用于检测特定目标的新型ATOM传感器。起始材料是编码单域抗体或纳米抗体以及青色、黄色或红色荧光蛋白的基因。我们还提供了使用除纳米抗体和单域抗体之外的结合域创建ATOM传感器的一般指南。关键特性 • 创建编码ATOM生物传感器的六成员(基于单域抗体)和九成员(基于纳米抗体)质粒文库。 • 使用肽标签将ATOM生物传感器靶向亚细胞区室。 • 在人类细胞中筛选生物传感器活性,并使用荧光显微镜和免费软件包对开启进行定量。 • 最耗时的步骤是ATOM基因构建,可通过商业基因合成绕过这一步骤。