Suppr超能文献

用于优化大气水收集的先进液体包裹纳米表面。

Advanced Liquid-Entrapped Nanosurfaces for Optimized Atmospheric Water Harvesting.

作者信息

Mohd Ghulam, Priyadarshini Saswati, Nair Abhigith, Chauhan Versha, Bhat Irfan Majeed, Tantry Ahmad Illahie, Kalathil Shafeer, Majid Kowsar, Lone Saifullah

机构信息

Department of Chemistry, National Institute of Technology (NIT), J&K, Srinagar, India, 190006.

iDREAM (Interdisciplinary Division for Renewable Energy & Advanced Materials) NIT, J&K, Srinagar, India, 190006.

出版信息

Langmuir. 2025 Jan 14;41(1):582-596. doi: 10.1021/acs.langmuir.4c03851. Epub 2024 Dec 20.

Abstract

Our study addresses the pressing global freshwater scarcity crisis by engineering advanced liquid-entrapped nanosurfaces optimized for highly efficient atmospheric water harvesting (AWH). Through a synergistic approach integrating carbon fiber paper (CFP), hydrothermally synthesized nanoneedles (NNs), and silicone oil liquid entrapment (LE) within NNs, we achieved remarkable improvements in water collection efficiency. While CFP captures fog effectively during AWH, it faces challenges with water-pinning effects, mitigated by NNs' improved droplet-spreading properties, leading to a notable 50% increase in harvesting efficiency. Further enhancements are observed upon silicone oil entrapment within CFP-bearing NNs, resulting in exceptional performance compared to noninfused surfaces. The resultant liquid entrapped nanoneedles (LE-NNs) and liquid entrapped oxidized (LE-ONNs) surfaces exhibit significant fog harvesting capability, achieving an impressive water collection rate of 21.643 ± 0.538 L/m/h, which represents a 4-fold increase compared to CFP alone. This experiment was conducted with a sample area of 0.5 cm. The samples were tilted at different angles to optimize mist contact with the surface, and the humidifier nozzle was positioned approximately 5 cm from the test surface to ensure a minimal fog velocity. Comprehensive analysis of morphological and compositional attributes is conducted by using techniques such as field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), and Fourier transform infrared (FTIR) spectroscopy. Leveraging CFP, NNs, or ONNs with LE presents a straightforward and highly effective surface engineering method. This approach holds promise for advancing water collection technologies and addressing global water crises sustainably.

摘要

我们的研究通过设计先进的液体包裹纳米表面来解决全球紧迫的淡水短缺危机,该表面针对高效大气水收集(AWH)进行了优化。通过将碳纤维纸(CFP)、水热合成纳米针(NNs)和纳米针内的硅油液体包裹(LE)相结合的协同方法,我们在集水效率方面取得了显著提高。虽然CFP在AWH过程中能有效捕获雾气,但它面临着水滴滞留效应的挑战,而NNs改善的液滴铺展特性减轻了这一问题,使收集效率显著提高了50%。在含CFP的NNs中包裹硅油后,观察到进一步的提升,与未注入的表面相比,性能卓越。所得的液体包裹纳米针(LE-NNs)和液体包裹氧化(LE-ONNs)表面表现出显著的雾气收集能力,实现了令人印象深刻的21.643±0.538 L/m/h的集水率,与单独的CFP相比提高了4倍。该实验在0.5平方厘米的样品面积上进行。样品以不同角度倾斜以优化雾气与表面的接触,加湿器喷嘴距离测试表面约5厘米以确保最小的雾气速度。通过使用场发射扫描电子显微镜(FESEM)、X射线光电子能谱(XPS)、能量色散X射线光谱(EDS)和傅里叶变换红外(FTIR)光谱等技术对形态和成分属性进行了全面分析。将CFP、NNs或ONNs与LE结合使用是一种简单且高效的表面工程方法。这种方法有望推动集水技术的发展并可持续地解决全球水危机。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5bb/11736850/c7a3424f3267/la4c03851_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验