Suppr超能文献

道路安全政策对致命车祸长期趋势的影响:基于高斯Copula的具有自回归移动平均过程的时间序列计数模型。

Influence of road safety policies on the long-term trends in fatal Crashes: A Gaussian Copula-based time series count model with an autoregressive moving average process.

作者信息

Lian Yanqi, Yasmin Shamsunnahar, Haque Md Mazharul

机构信息

School of Traffic &Transportation Engineering, Central South University, Changsha 410075, PR China; Queensland University of Technology, School of Civil and Environmental Engineering, Brisbane, Australia.

Queensland University of Technology, School of Civil and Environmental Engineering, and Centre for Accident Research and Road Safety - Queensland (CARRS-Q), Brisbane, Australia.

出版信息

Accid Anal Prev. 2025 Mar;211:107795. doi: 10.1016/j.aap.2024.107795. Epub 2024 Dec 19.

Abstract

Time series analysis plays a vital role in modeling historical crash trends and predicting the possible changes in future crash trends. In existing safety literature, earlier studies employed multiple approaches to model long-term crash risk profiles, such as integer-valued autoregressive Poisson regression model, integer-valued generalized autoregressive conditional heteroscedastic model, and generalized linear autoregressive and moving average models. However, these modeling frameworks often fail to fully capture several key properties of crash count data, especially negative serial correlation, and nonlinear dependence structures across temporal crash counts. To address these methodological gaps in existing safety literature, this study proposes to use a Gaussian Copula-based model for the long-term crash trend analysis. Specifically, this study proposes to use a Gaussian Copula-based Time Series Count Model with an Autoregressive Moving Average Process for the analysis of long-term trends in fatal crashes. The proposed approach can accommodate several data properties, which include (1) non-negative discrete property of count data, (2) positive and negative serial correlations among time series data, and (3) nonlinear dependence among time-series observations. The performance of the Gaussian Copula-based time series count model is compared with the generalized linear autoregressive and moving average model. The proposed modeling approaches are demonstrated by using yearly fatal crash count data for the years 1986 through 2022 from Queensland, Australia. The major safety interventions implemented in Queensland over those years are also highlighted to assess the possible and plausible impacts of these safety interventions in reducing fatal crash risks. Further, elasticity effects and overall percentage changes in fatal crashes across different time points are computed to demonstrate the implications of the proposed model. The policy analysis exercise shows that the implemented road safety interventions are likely to have diminishing marginal returns, underscoring the need for new and effective road safety policies to achieve the goal of zero fatalities within the set timeframe.

摘要

时间序列分析在模拟历史撞车趋势以及预测未来撞车趋势的可能变化方面发挥着至关重要的作用。在现有的安全文献中,早期研究采用了多种方法来模拟长期撞车风险概况,如整数自回归泊松回归模型、整数广义自回归条件异方差模型以及广义线性自回归和移动平均模型。然而,这些建模框架往往无法充分捕捉撞车计数数据的几个关键特性,尤其是负序列相关性以及跨时间撞车计数的非线性依赖结构。为了弥补现有安全文献中的这些方法差距,本研究建议使用基于高斯Copula的模型进行长期撞车趋势分析。具体而言,本研究建议使用基于高斯Copula的时间序列计数模型,并结合自回归移动平均过程来分析致命撞车事故的长期趋势。所提出的方法可以适应多种数据特性,其中包括:(1)计数数据的非负离散特性;(2)时间序列数据之间的正、负序列相关性;(3)时间序列观测值之间的非线性依赖关系。将基于高斯Copula的时间序列计数模型的性能与广义线性自回归和移动平均模型进行了比较。通过使用澳大利亚昆士兰州1986年至2022年的年度致命撞车计数数据,展示了所提出的建模方法。还强调了昆士兰州在这些年份实施的主要安全干预措施,以评估这些安全干预措施在降低致命撞车风险方面可能产生的影响。此外,计算了不同时间点致命撞车事故的弹性效应和总体百分比变化,以证明所提出模型的意义。政策分析表明,已实施的道路安全干预措施可能会出现边际收益递减的情况,这突出了制定新的有效道路安全政策以在设定时间内实现零死亡目标的必要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验