Suppr超能文献

一种生物打印的、可扩展的人类肾小管间质纤维化模型。

A bioprinted and scalable model of human tubulo-interstitial kidney fibrosis.

作者信息

Bouwens Daphne, Kabgani Nazanin, Bergerbit Cédric, Kim Hyojin, Ziegler Susanne, Ijaz Sadaf, Abdallah Ali, Haraszti Tamás, Maryam Sidrah, Omidinia-Anarkoli Abdolrahman, De Laporte Laura, Hayat Sikander, Jansen Jitske, Kramann Rafael

机构信息

Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology, Hypertension), RWTH Aachen University Medical Faculty, Aachen, Germany.

DWI-Leibniz Institute for Interactive Materials e.V., Aachen, Germany; AMB-Advanced Materials for Biomedicine, Institute of Applied Medical Engineering, University Hospital Aachen, Germany.

出版信息

Biomaterials. 2025 May;316:123009. doi: 10.1016/j.biomaterials.2024.123009. Epub 2024 Dec 12.

Abstract

Chronic kidney disease (CKD) affects more than 10% of the global population. As kidney function negatively correlates with the presence of interstitial fibrosis, the development of new anti-fibrotic therapies holds promise to stabilize functional decline in CKD patients. The goal of the study was to generate a scalable bioprinted 3-dimensional kidney tubulo-interstitial disease model of kidney fibrosis. We have generated novel human PDGFRβ pericytes, CD10 epithelial and CD31 endothelial cell lines and compared their transcriptomic signature to their in vivo counterpart using bulk RNA sequencing in comparison to human kidney single cell RNA-sequencing datasets. This comparison indicated that the novel cell lines still expressed kidney cell specific genes and shared many features with their native cell-state. PDGFRβ pericytes showed three-lineage differentiation capacity and differentiated towards myofibroblasts following TGFβ treatment. We utilized a fibrinogen/gelatin-based hydrogel as bioink and confirmed a good survival rate of all cell types within the bioink after printing. We then combined all three cells in a bioprinted model using separately printed compartments for tubule epithelium, and interstitial endothelium and pericytes. We confirmed that this 3D printed model allows to recapitulate key disease driving epithelial-mesenchymal crosstalk mechanisms of kidney fibrosis since injury of epithelial cells prior to bioprinting resulted in myofibroblast differentiation and fibrosis driven by pericytes after bioprinting. The bioprinted model was also scalable up to a 96-well format.

摘要

慢性肾脏病(CKD)影响着全球超过10%的人口。由于肾功能与间质纤维化的存在呈负相关,开发新的抗纤维化疗法有望稳定CKD患者的功能衰退。本研究的目的是构建一种可扩展的、生物打印的三维肾小管间质疾病肾纤维化模型。我们生成了新型的人血小板衍生生长因子受体β(PDGFRβ)周细胞、CD10上皮细胞和CD31内皮细胞系,并通过批量RNA测序将它们的转录组特征与其体内对应物进行比较,同时与人类肾脏单细胞RNA测序数据集进行对比。这种比较表明,新型细胞系仍表达肾细胞特异性基因,并与其天然细胞状态具有许多共同特征。PDGFRβ周细胞具有三系分化能力,在转化生长因子β(TGFβ)处理后可向肌成纤维细胞分化。我们使用基于纤维蛋白原/明胶的水凝胶作为生物墨水,并证实打印后生物墨水中所有细胞类型的存活率良好。然后,我们在一个生物打印模型中将所有三种细胞组合在一起,使用单独打印的隔室来模拟肾小管上皮、间质内皮和周细胞。我们证实,这种三维打印模型能够重现肾纤维化关键的疾病驱动上皮-间质相互作用机制,因为在生物打印前上皮细胞损伤会导致生物打印后周细胞驱动的肌成纤维细胞分化和纤维化。这种生物打印模型还可以扩展到96孔板格式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验