文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于药物筛选的生物打印:是减少动物实验的途径还是重新定义临床前研究?

Bioprinting for drug screening: A path toward reducing animal testing or redefining preclinical research?

作者信息

Budharaju Harshavardhan, Singh Rajendra K, Kim Hae-Won

机构信息

School of Chemical, Materials & Biological Engineering, Faculty of Engineering, University of Sheffield, Sheffield, S37HQ, UK.

Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.

出版信息

Bioact Mater. 2025 Jul 15;51:993-1017. doi: 10.1016/j.bioactmat.2025.07.006. eCollection 2025 Sep.


DOI:10.1016/j.bioactmat.2025.07.006
PMID:40697711
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12281243/
Abstract

Bioprinting is reshaping the field of tissue regeneration and drug screening by creating physiologically accurate and scalable tissue models that reduce the limitations of conventional animal testing. It helps to minimize interspecies variability by developing complex 3D tissue structures that closely mimic the structural and functional characteristics of native tissues, ensuring high reproducibility. Furthermore, it supports more humane and sustainable preclinical testing by aligning with the ethical 3Rs principles (Replacement, Reduction and Refinement). Although bioprinting offers many advantages, its full potential in evaluating drug testing applications has yet to be harnessed. In this review, we discuss the efficacy of key bioprinting techniques in replicating the structural and functional characteristics of engineered tissues, comparing them with their native counterparts. Further, we highlight case studies demonstrating the applications of bioprinted skin, cardiac, hepatic, renal, bone, and cancer models in pharmaceutical research. The commercialization of bioprinted drug testing platforms and their integration into pharmaceutical development are also discussed. Finally, we outline key advantages, current challenges, and future directions needed to establish bioprinting as a transformative tool for preclinical drug testing, aiming to replace traditional animal models.

摘要

生物打印正在重塑组织再生和药物筛选领域,它通过创建生理上精确且可扩展的组织模型来减少传统动物试验的局限性。通过开发复杂的三维组织结构,紧密模拟天然组织的结构和功能特征,它有助于将种间变异性降至最低,确保高重现性。此外,它通过遵循伦理的3R原则(替代、减少和优化),支持更人道和可持续的临床前试验。尽管生物打印具有诸多优势,但其在评估药物测试应用方面的全部潜力尚未得到充分发挥。在本综述中,我们讨论了关键生物打印技术在复制工程组织的结构和功能特征方面的功效,并将它们与天然组织进行比较。此外,我们重点介绍了一些案例研究,展示了生物打印的皮肤、心脏、肝脏、肾脏、骨骼和癌症模型在药物研究中的应用。我们还讨论了生物打印药物测试平台的商业化及其融入药物开发的情况。最后,我们概述了将生物打印确立为临床前药物测试变革性工具所需的关键优势、当前挑战和未来方向,旨在取代传统动物模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/12281243/1f2b2b65dcee/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/12281243/ccca2fe9c568/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/12281243/81602e9a3da9/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/12281243/f8698cb9eb2e/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/12281243/10eb4057c25d/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/12281243/21b952bbfe19/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/12281243/83902646c8fb/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/12281243/5d594c647099/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/12281243/eb1e0af743aa/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/12281243/499273523e4d/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/12281243/1f2b2b65dcee/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/12281243/ccca2fe9c568/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/12281243/81602e9a3da9/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/12281243/f8698cb9eb2e/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/12281243/10eb4057c25d/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/12281243/21b952bbfe19/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/12281243/83902646c8fb/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/12281243/5d594c647099/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/12281243/eb1e0af743aa/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/12281243/499273523e4d/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49da/12281243/1f2b2b65dcee/gr9.jpg

相似文献

[1]
Bioprinting for drug screening: A path toward reducing animal testing or redefining preclinical research?

Bioact Mater. 2025-7-15

[2]
Innovations in cancer treatment: evaluating drug resistance with lab-on-a-chip technologies.

Int J Pharm. 2025-7-5

[3]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[4]
Adapting Safety Plans for Autistic Adults with Involvement from the Autism Community.

Autism Adulthood. 2025-5-28

[5]
Applications of 3D Bioprinting in Oral and Maxillofacial Surgery: An Insight.

J Maxillofac Oral Surg. 2024-12

[6]
The Ethical Implications of Tissue Engineering for Regenerative Purposes: A Systematic Review.

Tissue Eng Part B Rev. 2023-4

[7]
3D bioprinting approaches for musculoskeletal interfaces in tissue engineering.

Int J Pharm. 2025-7-6

[8]
Compartmentalized 3D bioprinting of the limbal niche with distinct hPSC-LSC subpopulations for corneal disease modeling.

Acta Biomater. 2025-7-1

[9]
Bioprinted high cell density liver model with improved hepatic metabolic functions.

Biomaterials. 2025-9

[10]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2017-12-22

本文引用的文献

[1]
Plant-Origin Compounds and Materials for Advancing Bone Tissue Engineering and 3D Bioprinting: Traditional Medicine Aspects and Current Perspectives.

J Tissue Eng Regen Med. 2025-1-7

[2]
Bioprinted Patient-Derived Organoid Arrays Capture Intrinsic and Extrinsic Tumor Features for Advanced Personalized Medicine.

Adv Sci (Weinh). 2025-5

[3]
3D bioprinted multi-layered cell constructs with gradient core-shell interface for tendon-to-bone tissue regeneration.

Bioact Mater. 2024-10-11

[4]
3D bioprinting for the construction of drug testing models-development strategies and regulatory concerns.

Front Bioeng Biotechnol. 2025-2-14

[5]
Multi-material Volumetric Bioprinting and Plug-and-play Suspension Bath Biofabrication via Bioresin Molecular Weight Tuning and via Multiwavelength Alignment Optics.

Adv Mater. 2025-4

[6]
Bioprinting spatially guided functional 3D neural circuits with agarose-xanthan gum copolymer hydrogels.

Biomaterials. 2025-7

[7]
A bioprinted animal patient-derived breast cancer model for anti-cancer drug screening.

Mater Today Bio. 2025-1-3

[8]
Bioprinted optoelectronically active cardiac tissues.

Sci Adv. 2025-1-24

[9]
Innovative bioinks for 3D bioprinting: Exploring technological potential and regulatory challenges.

J Tissue Eng. 2025-1-20

[10]
Advanced 3D bioprinted liver models with human-induced hepatocytes for personalized toxicity screening.

J Tissue Eng. 2025-1-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索