文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用激光辅助 3D 生物打印和功能生物墨水构建基于人干细胞的角膜组织模拟结构。

Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks.

机构信息

BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpön katu 34, FI-33520 Tampere, Finland; Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany.

Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany.

出版信息

Biomaterials. 2018 Jul;171:57-71. doi: 10.1016/j.biomaterials.2018.04.034. Epub 2018 Apr 16.


DOI:10.1016/j.biomaterials.2018.04.034
PMID:29684677
Abstract

There is a high demand for developing methods to produce more native-like 3D corneal structures. In the present study, we produced 3D cornea-mimicking tissues using human stem cells and laser-assisted bioprinting (LaBP). Human embryonic stem cell derived limbal epithelial stem cells (hESC-LESC) were used as a cell source for printing epithelium-mimicking structures, whereas human adipose tissue derived stem cells (hASCs) were used for constructing layered stroma-mimicking structures. The development and optimization of functional bioinks was a crucial step towards successful bioprinting of 3D corneal structures. Recombinant human laminin and human sourced collagen I served as the bases for the functional bioinks. We used two previously established LaBP setups based on laser induced forward transfer, with different laser wavelengths and appropriate absorption layers. We bioprinted three types of corneal structures: stratified corneal epithelium using hESC-LESCs, lamellar corneal stroma using alternating acellular layers of bioink and layers with hASCs, and finally structures with both a stromal and epithelial part. The printed constructs were evaluated for their microstructure, cell viability and proliferation, and key protein expression (Ki67, p63α, p40, CK3, CK15, collagen type I, VWF). The 3D printed stromal constructs were also implanted into porcine corneal organ cultures. Both cell types maintained good viability after printing. Laser-printed hESC-LESCs showed epithelial cell morphology, expression of Ki67 proliferation marker and co-expression of corneal progenitor markers p63α and p40. Importantly, the printed hESC-LESCs formed a stratified epithelium with apical expression of CK3 and basal expression of the progenitor markers. The structure of the 3D bioprinted stroma demonstrated that the hASCs had organized horizontally as in the native corneal stroma and showed positive labeling for collagen I. After 7 days in porcine organ cultures, the 3D bioprinted stromal structures attached to the host tissue with signs of hASCs migration from the printed structure. This is the first study to demonstrate the feasibility of 3D LaBP for corneal applications using human stem cells and successful fabrication of layered 3D bioprinted tissues mimicking the structure of the native corneal tissue.

摘要

人们对于开发更接近天然的 3D 角膜结构的方法有很高的需求。在本研究中,我们使用人类干细胞和激光辅助生物打印(LaBP)来生产 3D 角膜模拟组织。人类胚胎干细胞衍生的角膜缘上皮干细胞(hESC-LESC)被用作打印上皮模拟结构的细胞来源,而人类脂肪组织衍生的干细胞(hASCs)则用于构建分层基质模拟结构。功能性生物墨水的开发和优化是成功生物打印 3D 角膜结构的关键步骤。重组人层粘连蛋白和人源胶原蛋白 I 用作功能性生物墨水的基础。我们使用了两种先前建立的基于激光诱导前向转移的 LaBP 设备,使用不同的激光波长和适当的吸收层。我们生物打印了三种类型的角膜结构:使用 hESC-LESCs 打印分层角膜上皮,使用无细胞生物墨水层和带有 hASCs 的层交替的层状角膜基质,最后是具有基质和上皮部分的结构。评估了打印结构的微观结构、细胞活力和增殖以及关键蛋白表达(Ki67、p63α、p40、CK3、CK15、胶原蛋白 I、VWF)。打印的基质结构也被植入猪角膜器官培养物中。两种细胞类型在打印后都保持良好的活力。激光打印的 hESC-LESCs 显示出上皮细胞形态,Ki67 增殖标志物的表达以及角膜祖细胞标志物 p63α 和 p40 的共表达。重要的是,打印的 hESC-LESCs 形成了具有 CK3 顶端表达和祖细胞标志物基底表达的分层上皮。3D 生物打印基质的结构表明,hASCs 已水平组织化,类似于天然角膜基质,并对胶原蛋白 I 呈阳性标记。在猪器官培养物中培养 7 天后,3D 生物打印的基质结构与宿主组织附着,并出现 hASCs 从打印结构迁移的迹象。这是第一项使用人类干细胞和成功制造模拟天然角膜组织结构的分层 3D 生物打印组织的 3D LaBP 用于角膜应用的可行性研究。

相似文献

[1]
Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks.

Biomaterials. 2018-4-16

[2]
Hyaluronic acid based next generation bioink for 3D bioprinting of human stem cell derived corneal stromal model with innervation.

Biofabrication. 2022-12-29

[3]
Novel strategy for multi-material 3D bioprinting of human stem cell based corneal stroma with heterogenous design.

Mater Today Bio. 2023-12-22

[4]
Bioprinting of anisotropic functional corneal stroma using mechanically robust multi-material bioink based on decellularized cornea matrix.

Biomater Adv. 2024-12

[5]
Cornea-Specific Human Adipose Stem Cell-Derived Extracellular Matrix for Corneal Stroma Tissue Engineering.

ACS Appl Mater Interfaces. 2024-4-3

[6]
Stereolithography 3D Bioprinting Method for Fabrication of Human Corneal Stroma Equivalent.

Ann Biomed Eng. 2020-7

[7]
3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix.

Acta Biomater. 2021-1-1

[8]
Long-Term Cultures of Human Cornea Limbal Explants Form 3D Structures Ex Vivo - Implications for Tissue Engineering and Clinical Applications.

PLoS One. 2015-11-18

[9]
Characterisation of corneas following different time and storage methods for their use as a source of stem-like limbal epithelial cells.

Exp Eye Res. 2021-10

[10]
Intracorneal Implantation of 3D Bioprinted Scaffolds Containing Mesenchymal Stromal Cells Using Femtosecond-Laser-Assisted Intrastromal Keratoplasty.

Macromol Biosci. 2023-7

引用本文的文献

[1]
Bioprinted Organoids: An Innovative Engine in Biomedicine.

Adv Sci (Weinh). 2025-9

[2]
Effect of 3D Printing Parameters on the Transparency of Medical Hydrogels for Corneal Stroma Fabrication.

Gels. 2025-7-8

[3]
Transformative bioprinting: 4D printing and its role in the evolution of engineering and personalized medicine.

Discov Nano. 2025-7-23

[4]
Cell and tissue reprogramming: Unlocking a new era in medical drug discovery.

Pharmacol Rev. 2025-6-26

[5]
Decellularized Extracellular Matrices for Skin Wound Treatment.

Materials (Basel). 2025-6-12

[6]
Advances in 3D Bioprinting for Corneal Regeneration.

Gels. 2025-5-31

[7]
3D bioprinting for bile duct tissue engineering: current status and prospects.

Front Bioeng Biotechnol. 2025-4-14

[8]
Risk of Permanent Corneal Injury in Microgravity: Spaceflight-Associated Hazards, Challenges to Vision Restoration, and Role of Biotechnology in Long-Term Planetary Missions.

Life (Basel). 2025-4-4

[9]
Can Stem Cell Therapy Revolutionize Ocular Disease Treatment? A Critical Review of Preclinical and Clinical Advances.

Stem Cell Rev Rep. 2025-4-23

[10]
Advances and Challenges in 3D Bioprinted Cancer Models: Opportunities for Personalized Medicine and Tissue Engineering.

Polymers (Basel). 2025-3-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索