Suppr超能文献

临床数据的半局部时间敏感匿名化

Semi-local Time sensitive Anonymization of Clinical Data.

作者信息

Hammer Freimut Gebhard Herbert, Buglowski Mateusz, Stollenwerk André

机构信息

RWTH Aachen University, Informatik 11 - Embedded Software, 52056, Aachen, Germany.

出版信息

Sci Data. 2024 Dec 20;11(1):1412. doi: 10.1038/s41597-024-04192-1.

Abstract

A method for the anonymization of time-continuous data, which preserves the relation between the time- and value dimension is proposed in this work. The approach protects against linking- and distribution attacks by providing k-anonymity and t-closeness. Distributions can be generated from given sets using Distribution Clustering, according to the similarity of the curves, which serve as a replacement for the population distribution. Before the data is anonymized, it is split along the time-axis using Windowed Fréchet Splitting, to reduce the duration and information loss. The proposed approach employs bucketization using the Fréchet distance with an implicit maximum cost and implied t for closeness and multiple redistribution phases. The information loss, median relative error and achieved t for the closeness is low, and the runtime was reduced with the introduction of semi-local decisions.

摘要

本文提出了一种对时间连续数据进行匿名化处理的方法,该方法保留了时间维度和值维度之间的关系。该方法通过提供k匿名性和t接近性来防范链接攻击和分布攻击。可以根据曲线的相似性,使用分布聚类从给定集合生成分布,以此替代总体分布。在对数据进行匿名化处理之前,使用窗口弗雷歇分割法沿时间轴进行分割,以减少持续时间和信息损失。所提出的方法采用弗雷歇距离进行分桶处理,具有隐式最大成本和隐含的t接近度,并进行多个重新分配阶段。信息损失、中位数相对误差以及实现的t接近度都很低,并且通过引入半局部决策减少了运行时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75e0/11661997/90141ac786e4/41597_2024_4192_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验