Mai Yuanqiang, Zhang Dongsheng, Maliutina Kristina, Leng Xueyang, Cai Nengjun, Li Jialu, Wang Chao, Huang Yu, Zhang Kai, Zhang Wujun, Li Yongwang, Besenbacher Flemming, Niemantsverdriet Hans, Liang Wenting, Shen Yanbin, Lim Tingbin, Richards Emma, Su Ren
Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, 215006, China.
SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Beijing, 101407, China.
Adv Sci (Weinh). 2025 Feb;12(6):e2410680. doi: 10.1002/advs.202410680. Epub 2024 Dec 20.
Hydrogen peroxide (HO) is an important chemical in synthetic chemistry with huge demands. Photocatalytic synthesis of HO via oxygen reduction and water oxidation reactions (ORR and WOR) is considered as a promising and desirable solution for on-site applications. However, the efficiency of such a process is low due to the poor solubility of molecular oxygen and the rapid reverse reaction of hydroxyl radicals (OH) with hydrogen atoms (H). Here, a strategy is proposed to boost the HO evolution via oxidation of water by employing a H acceptor (A, nitrocyclohexane), an OH mediator (M, dioxane), and a photocatalyst (CdS nanosheets). While OH radicals are stabilized by dioxane to produce ketyl radicals prior to the formation of HO, H atoms are effectively utilized in the generation of cyclohexanone oxime, an important intermediate in the production of Nylon 6. The system displays a rapid kinetic accumulation of HO (0.13 min) to a high concentration (6.6 mM). At optimum reaction conditions, a high quantum efficiency (16.6%) and light-to-chemical conversion efficiency (4.9%) can be achieved under 410 nm irradiation.
过氧化氢(HO)是合成化学中一种需求量巨大的重要化学品。通过氧还原和水氧化反应(ORR和WOR)光催化合成HO被认为是一种有前景且理想的现场应用解决方案。然而,由于分子氧的低溶解度以及羟基自由基(OH)与氢原子(H)的快速逆反应,该过程的效率较低。在此,提出了一种策略,通过使用氢受体(A,硝基环己烷)、OH介质(M,二氧六环)和光催化剂(CdS纳米片),利用水的氧化来促进HO的生成。在HO形成之前,OH自由基被二氧六环稳定以产生酮基自由基,而氢原子则有效地用于生成环己酮肟,这是尼龙6生产中的一种重要中间体。该系统显示出HO的快速动力学积累(0.13分钟)至高浓度(6.6 mM)。在最佳反应条件下,在410 nm照射下可实现高量子效率(16.6%)和光化学转换效率(4.9%)。