Chen Fangshuai, Lv Ximeng, Wang Haozhen, Wen Fan, Qu Liangti, Zheng Gengfeng, Han Qing
Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai 200438, P. R. China.
JACS Au. 2024 Mar 5;4(3):1219-1228. doi: 10.1021/jacsau.4c00076. eCollection 2024 Mar 25.
Borocarbonitride (BCN), in a mesoscopic asymmetric state, is regarded as a promising photocatalyst for artificial photosynthesis. However, BCN materials reported in the literature primarily consist of symmetric N-[B] units, which generate highly spatial coupled electron-hole pairs upon irradiation, thus kinetically suppressing the solar-to-chemical conversion efficiency. Here, we propose a facile and fast weak-field electro-flash strategy, with which structural symmetry breaking is introduced on key nitrogen sites. As-obtained double-substituted BCN (-BCN) possesses high-concentration asymmetric [B]-N-C coordination, which displays a highly separated electron-hole state and broad visible-light harvesting, as well as provides electron-rich N sites for O affinity. Thereby, -BCN delivers an apparent quantum yield of 7.6% at 400 nm and a solar-to-chemical conversion efficiency of 0.3% for selective 2e-reduction of O to HO, over 4-fold higher than that of the traditional calcined BCN analogue and superior to the metal-free CN-based photocatalysts reported so far. The weak-field electro-flash method and as-induced catalytic site symmetry-breaking methodologically provide a new method for the fast and low-cost fabrication of efficient nonmetallic catalysts toward solar-to-chemical conversions.
处于介观不对称状态的硼碳氮化物(BCN)被视为一种有前途的人工光合作用光催化剂。然而,文献中报道的BCN材料主要由对称的N-[B]单元组成,这些单元在光照下会产生高度空间耦合的电子-空穴对,从而在动力学上抑制了太阳能到化学能的转换效率。在此,我们提出了一种简便快速的弱场电闪策略,通过该策略在关键氮位点引入结构对称性破缺。所获得的双取代BCN(-BCN)具有高浓度的不对称[B]-N-C配位,表现出高度分离的电子-空穴状态和宽广的可见光捕获能力,同时还为氧亲和力提供了富电子的N位点。因此,-BCN在400 nm处的表观量子产率为7.6%,对于将O选择性2e-还原为HO的太阳能到化学能的转换效率为0.3%,比传统煅烧的BCN类似物高出4倍以上,且优于迄今为止报道的无金属CN基光催化剂。弱场电闪方法以及由此引发的催化位点对称性破缺在方法上为快速低成本制备高效的非金属太阳能到化学能转换催化剂提供了一种新方法。