Uuh Narvaez Jonatan Jafet, Guerrero-Analco José A, Monribot-Villanueva Juan Luis, Vidal-Limon Abraham, Melgar Lalanne Guiomar, Herrera Rafael Rojas, Segura Campos Maira Rubi
Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Mexico.
Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico.
J Sci Food Agric. 2025 Apr;105(6):3264-3273. doi: 10.1002/jsfa.14085. Epub 2024 Dec 21.
α-Amylase (α-AMY) and α-glucosidase (α-GLU) inhibitors are important for controlling postprandial hyperglycemia (PHG). Bixa orellana (annatto) reported inhibitory activity against these enzymes because of its bioactive compound content. However, an understanding of its inhibitory mechanisms and metabolic profile is necessary to establish its therapeutic potential. The present study aimed to elucidate the inhibitory mechanisms of B. orellana extract (BOE) on α-AMY and α-GLU, identify and quantify its bioactive compounds using metabolomics (untargeted and targeted) analyses, and evaluate their interactions through in silico approaches.
BOE exhibited IC values of 37.75 and 47.06 mg mL for α-AMY and α-GLU, respectively, indicating mixed and competitive inhibition types. Thirty-six putative compounds were identified by untargeted metabolomics, mainly fatty acids (dethiobiotin, occidentalol, palmitic acid, norbixin, among others). The most significant biosynthetic pathways included secondary metabolites (unclassified), unsaturated fatty acids, phenylpropanoids and flavonoid metabolism. Eighteen compounds were identified and quantified by the targeted analysis, such as l-phenylalanine, gallic acid, protocatechuic acid and naringenin. In silico studies highlighted xanthoangelol, norbixin, myricetin and 26-hydroxybrassinolide as key compounds with the highest binding affinities to enzyme active sites.
BOE effectively inhibited α-AMY and α-GLU, with gallic acid, naringenin, xanthoangelol, norbixin and 26-hydroxybrassinolide identified as key bioactive contributors. These findings provide molecular evidence of the inhibitory mechanisms of BOE and support its potential for PHG management and diabetes control. © 2024 Society of Chemical Industry.
α-淀粉酶(α-AMY)和α-葡萄糖苷酶(α-GLU)抑制剂对于控制餐后高血糖(PHG)至关重要。红木(胭脂树)因其生物活性化合物含量而被报道具有针对这些酶的抑制活性。然而,要确定其治疗潜力,有必要了解其抑制机制和代谢特征。本研究旨在阐明红木提取物(BOE)对α-AMY和α-GLU的抑制机制,使用代谢组学(非靶向和靶向)分析鉴定并定量其生物活性化合物,并通过计算机模拟方法评估它们之间的相互作用。
BOE对α-AMY和α-GLU的IC值分别为37.75和47.06 mg/mL,表明为混合抑制和竞争性抑制类型。通过非靶向代谢组学鉴定出36种推定化合物,主要是脂肪酸(脱硫生物素、西方草酚酮、棕榈酸、降胭脂树素等)。最显著的生物合成途径包括次级代谢产物(未分类)、不饱和脂肪酸、苯丙烷类和黄酮类代谢。通过靶向分析鉴定并定量了18种化合物,如L-苯丙氨酸、没食子酸、原儿茶酸和柚皮素。计算机模拟研究突出了黄当归醇、降胭脂树素、杨梅素和26-羟基油菜素内酯作为与酶活性位点具有最高结合亲和力的关键化合物。
BOE有效抑制α-AMY和α-GLU,没食子酸、柚皮素、黄当归醇、降胭脂树素和26-羟基油菜素内酯被确定为关键生物活性成分。这些发现为BOE的抑制机制提供了分子证据,并支持其在PHG管理和糖尿病控制方面的潜力。© 2024化学工业协会。