Suppr超能文献

DCSENets:使用增强的基于脑电图的频谱图可视化技术进行独立于患者的癫痫发作分类的可解释深度学习

DCSENets: Interpretable deep learning for patient-independent seizure classification using enhanced EEG-based spectrogram visualization.

作者信息

Aboyeji Sunday Timothy, Ahmad Ijaz, Wang Xin, Chen Yan, Yao Chen, Li Guanglin, Tong Michael Chi Fai, Siu Alice K Y, Zhao Guoru, Chen Shixiong

机构信息

CAS Key Laboratory of Human-Machine Intelligence Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, Guangdong 518055, China.

CAS Key Laboratory of Human-Machine Intelligence Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, Guangdong 518055, China.

出版信息

Comput Biol Med. 2025 Feb;185:109558. doi: 10.1016/j.compbiomed.2024.109558. Epub 2024 Dec 20.

Abstract

Neurologists often face challenges in identifying epileptic activities within multichannel EEG recordings, requiring extensive hours of analysis. Computer-aided diagnosis systems have been proposed to reduce manual inspection of EEG signals by neurologists. However, direct analysis of EEG signals is difficult due to their complex and dynamic nature, with variation across multiple patients. Therefore, researchers have proposed the short-time Fourier transform (STFT) to capture dynamic events indicative of seizures through time-varying frequency representation of EEG signals. However, tradeoffs between time and frequency resolution limited the spectrogram's interpretability and affected clinical deployment. Hence, this study proposes extracting high-resolution channels via a novel STFT spectrogram construction algorithm encompassing taper functions for seizure diagnosis. Initially, we extracted seizure and non-seizure segments from each channel of selected patients in the CHB-MIT dataset. Next, we systematically apply taper functions like Hann and Gaussian windows to minimize the edge effect during the construction of spectrogram images. Finally, we employ Dilated Convolutional Squeeze and Excitation Networks (DCSENets) through leave-one-patient-out cross-validation (LOPOCV) to perform patient-independent seizure classification. The proposed DCSENets achieve an average accuracy of 87.20±11.48% and 87.29±10.48% with Hann and Gaussian taper functions, respectively, and 86.85±11.56% without the taper function. Most patients with high performances indicate similarity in train-test sample distribution using the Kolmogorov-Smirnov test at 0.01<p≤0.05 or p>0.05. Furthermore, the Grad CAM deep visual explainer integration enhances the interpretability of the deep learning model's decision-making process. Consequently, neurologists are provided not only with enhanced visualized spectrograms but also a transparent model for improved seizure diagnosis.

摘要

神经科医生在多通道脑电图记录中识别癫痫活动时常常面临挑战,这需要花费大量时间进行分析。有人提出使用计算机辅助诊断系统来减少神经科医生对脑电图信号的人工检查。然而,由于脑电图信号复杂多变,且不同患者之间存在差异,直接分析脑电图信号很困难。因此,研究人员提出了短时傅里叶变换(STFT),通过脑电图信号的时变频率表示来捕捉指示癫痫发作的动态事件。然而,时间分辨率和频率分辨率之间的权衡限制了频谱图的可解释性,并影响了其临床应用。因此,本研究提出通过一种新颖的STFT频谱图构建算法提取高分辨率通道,该算法包含用于癫痫诊断的窗函数。首先,我们从CHB-MIT数据集中选定患者的每个通道提取癫痫发作和非癫痫发作片段。接下来,我们系统地应用汉宁窗和高斯窗等窗函数,以最小化频谱图图像构建过程中的边缘效应。最后,我们通过留一患者交叉验证(LOPOCV)使用扩张卷积挤压与激励网络(DCSENets)进行独立于患者的癫痫发作分类。所提出的DCSENets分别使用汉宁窗和高斯窗函数时,平均准确率达到87.20±11.48%和87.29±10.48%,不使用窗函数时为86.85±11.56%。大多数表现良好的患者在0.01<p≤0.05或p>0.05时使用柯尔莫哥洛夫-斯米尔诺夫检验表明训练-测试样本分布相似。此外,Grad CAM深度视觉解释器集成增强了深度学习模型决策过程的可解释性。因此,不仅为神经科医生提供了增强的可视化频谱图,还提供了一个用于改善癫痫诊断的透明模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验