Suppr超能文献

基于 EEG 信号的深度卷积神经网络自动检测和诊断癫痫发作

Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals.

机构信息

Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore; Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore; Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Malaysia.

Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore.

出版信息

Comput Biol Med. 2018 Sep 1;100:270-278. doi: 10.1016/j.compbiomed.2017.09.017. Epub 2017 Sep 27.

Abstract

An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of epilepsy. The EEG signal contains information about the electrical activity of the brain. Traditionally, neurologists employ direct visual inspection to identify epileptiform abnormalities. This technique can be time-consuming, limited by technical artifact, provides variable results secondary to reader expertise level, and is limited in identifying abnormalities. Therefore, it is essential to develop a computer-aided diagnosis (CAD) system to automatically distinguish the class of these EEG signals using machine learning techniques. This is the first study to employ the convolutional neural network (CNN) for analysis of EEG signals. In this work, a 13-layer deep convolutional neural network (CNN) algorithm is implemented to detect normal, preictal, and seizure classes. The proposed technique achieved an accuracy, specificity, and sensitivity of 88.67%, 90.00% and 95.00%, respectively.

摘要

脑电图(EEG)是一种常用于辅助癫痫诊断的辅助测试。脑电图信号包含有关大脑电活动的信息。传统上,神经科医生采用直接目视检查来识别癫痫样异常。这种技术耗时,受技术伪影限制,由于读者专业水平的不同,结果也不同,并且在识别异常方面存在局限性。因此,开发一种使用机器学习技术自动区分这些脑电图信号类别的计算机辅助诊断(CAD)系统是至关重要的。这是第一项使用卷积神经网络(CNN)分析脑电图信号的研究。在这项工作中,实现了一个 13 层深度卷积神经网络(CNN)算法,用于检测正常、发作前和发作期的类别。该技术的准确率、特异性和灵敏度分别为 88.67%、90.00%和 95.00%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验