Suppr超能文献

基于相似度的上下文感知持续学习的脉冲神经网络

Similarity-based context aware continual learning for spiking neural networks.

作者信息

Han Bing, Zhao Feifei, Li Yang, Kong Qingqun, Li Xianqi, Zeng Yi

机构信息

Brain-inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.

Brain-inspired Cognitive Intelligence Lab, Institute of Automation, Chinese Academy of Sciences, Beijing, China.

出版信息

Neural Netw. 2025 Apr;184:107037. doi: 10.1016/j.neunet.2024.107037. Epub 2024 Dec 12.

Abstract

Biological brains have the capability to adaptively coordinate relevant neuronal populations based on the task context to learn continuously changing tasks in real-world environments. However, existing spiking neural network-based continual learning algorithms treat each task equally, ignoring the guiding role of different task similarity associations for network learning, which limits knowledge utilization efficiency. Inspired by the context-dependent plasticity mechanism of the brain, we propose a Similarity-based Context Aware Spiking Neural Network (SCA-SNN) continual learning algorithm to efficiently accomplish task incremental learning and class incremental learning. Based on contextual similarity across tasks, the SCA-SNN model can adaptively reuse neurons from previous tasks that are beneficial for new tasks (the more similar, the more neurons are reused) and flexibly expand new neurons for the new task (the more similar, the fewer neurons are expanded). Selective reuse and discriminative expansion significantly improve the utilization of previous knowledge and reduce energy consumption. Extensive experimental results on CIFAR100, ImageNet generalized datasets, and FMNIST-MNIST, SVHN-CIFAR100 mixed datasets show that our SCA-SNN model achieves superior performance compared to both SNN-based and DNN-based continual learning algorithms. Additionally, our algorithm has the capability to adaptively select similar groups of neurons for related tasks, offering a promising approach to enhancing the biological interpretability of efficient continual learning.

摘要

生物大脑有能力根据任务上下文自适应地协调相关神经元群体,以便在现实世界环境中学习不断变化的任务。然而,现有的基于脉冲神经网络的持续学习算法对每个任务一视同仁,忽略了不同任务相似性关联对网络学习的指导作用,这限制了知识利用效率。受大脑上下文依赖可塑性机制的启发,我们提出了一种基于相似性的上下文感知脉冲神经网络(SCA-SNN)持续学习算法,以有效地完成任务增量学习和类别增量学习。基于跨任务的上下文相似性,SCA-SNN模型可以自适应地重用先前任务中对新任务有益的神经元(越相似,重用的神经元越多),并灵活地为新任务扩展新神经元(越相似,扩展的神经元越少)。选择性重用和区分性扩展显著提高了先前知识的利用率并降低了能耗。在CIFAR100、ImageNet广义数据集以及FMNIST-MNIST、SVHN-CIFAR100混合数据集上的大量实验结果表明,我们的SCA-SNN模型与基于SNN和基于DNN的持续学习算法相比,具有更优的性能。此外,我们的算法有能力为相关任务自适应地选择相似的神经元组,为增强高效持续学习的生物学可解释性提供了一种有前景的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验