Rosli Khairul Azree, Misran Azizah, Saiful Yazan Latifah, Megat Wahab Puteri Edaroyati
Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
Plant Physiol Biochem. 2025 Feb;219:109374. doi: 10.1016/j.plaphy.2024.109374. Epub 2024 Dec 5.
Agastache rugosa, a perennial herb native to temperate and subtropical regions, shows remarkable adaptive strategies when exposed to varying light and nutrient conditions in tropical environments. Our study reveals new insights into the crosstalk mechanisms involving carbohydrate homeostasis, biomass allocation, and nutrient acquisition in A. rugosa under different environmental conditions. Treatments were two light levels; HL (high-light, 0% shade) and LL (low-light, 50% shade), and four nutrient rates; NPK1 (40 mg kg), NPK2 (80 mg kg), NPK3 (120 mg kg) and NPK4 (160 mg kg). High-light coupled with increasing nutrient levels (HL-NPK3 and HL-NPK4) promoted biomass production via increased carbon assimilation, associated with higher soluble sugar levels and higher phosphorus and potassium uptake mediated by the upregulation of plasma membrane H-ATPase. Maximum carbohydrate accumulation occurred at high-light and the lowest nutrient levels (HL-NPK1), coinciding with increased nitrogen uptake and the drastically high leaf nitrogen concentration. This response was preceded by the upregulation of acid phosphatase and sucrose phosphate synthase, suggesting a compensatory mechanism to maintain nutrient and carbohydrate reserves for critical metabolic processes. Starch increase was more apparent under low-light and higher nutrient levels (LL-NPK3 and LL-NPK4), relative to invertase downregulation, indicating a shift towards carbohydrate storage rather than utilization. These findings underscore the complex interplay between sugar signaling, nutrient sensing, enzymatic actions, and proton pump activity in modulating plant adaptation to varying environmental conditions. This study also highlights the importance of understanding how non-model medicinal species like A. rugosa reprogram their metabolism and resource allocation in response to environmental changes.
藿香,一种原产于温带和亚热带地区的多年生草本植物,在热带环境中暴露于不同的光照和养分条件下时,展现出显著的适应策略。我们的研究揭示了藿香在不同环境条件下涉及碳水化合物稳态、生物量分配和养分获取的相互作用机制的新见解。处理包括两个光照水平:HL(高光,0%遮荫)和LL(低光,50%遮荫),以及四个养分水平;NPK1(40毫克/千克)、NPK2(80毫克/千克)、NPK3(120毫克/千克)和NPK4(160毫克/千克)。高光与增加的养分水平(HL-NPK3和HL-NPK4)相结合,通过增加碳同化促进生物量生产,这与较高的可溶性糖水平以及由质膜H-ATPase上调介导的更高的磷和钾吸收相关。最大的碳水化合物积累发生在高光和最低养分水平(HL-NPK1),同时伴随着氮吸收增加和叶片氮浓度急剧升高。这种反应之前是酸性磷酸酶和蔗糖磷酸合酶的上调,表明存在一种补偿机制,以维持关键代谢过程的养分和碳水化合物储备。相对于转化酶下调,淀粉增加在低光和较高养分水平(LL-NPK3和LL-NPK4)下更为明显,表明转向碳水化合物储存而非利用。这些发现强调了糖信号传导、养分感知、酶促作用和质子泵活性在调节植物对不同环境条件的适应中的复杂相互作用。这项研究还强调了理解像藿香这样的非模式药用植物如何响应环境变化重新编程其代谢和资源分配的重要性。