Suppr超能文献

文丘里管中R134a制冷剂的空化动力学及热力学效应

Cavitation dynamics and thermodynamic effect of R134a refrigerant in a Venturi tube.

作者信息

Zhang Beile, Zhang Ze, Fang Xufeng, Xue Rong, Chen Shuangtao, Hou Yu

机构信息

School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China; MOE Key Laboratory of Cryogenic Technology and Equipment, Xi'an Jiaotong University, Xi'an 710049, China.

出版信息

Ultrason Sonochem. 2025 Jan;112:107202. doi: 10.1016/j.ultsonch.2024.107202. Epub 2024 Dec 15.

Abstract

Cavitation plays a crucial role in the reliability of components in refrigeration systems. The properties of refrigerants change significantly with temperature, thereby amplifying the impact of thermodynamic effects. This study, based on the Large Eddy Simulation (LES) method and the Schnerr-Sauer (S-S) cavitation model, investigates the transient cavitating flow characteristics of the R134a refrigerant in a Venturi tube (VT). The bubble number density in the S-S model was improved based on the experimental data of pressure and temperature. Simulation results indicate that there are two shedding modes of cavitation clouds in R134a refrigerant. One is induced by the combined action of reentrant flow and the vortices centrifugal force, while the other is generated by the central jet of the mainstream and the reverse jet produced by the collapsing cavitation bubbles. Furthermore, the thermodynamic effects of the refrigerant exert a certain inhibitory effect on cavitation, revealing the causes of instability in the refrigerant cavitation interface and the shedding characteristics of cavitation clouds. The relationship between local sound speed, flow velocity, and heat conduction rate in the cavitation region was studied, unveiling a time-lag in temperature changes relative to pressure changes in the intensive cavitation region. This study provides insights into the complex cavitation dynamics, especially in R134a refrigerant systems, and provides an approach for accurately predicting and managing cavitation in various industrial applications.

摘要

空化现象在制冷系统部件的可靠性方面起着至关重要的作用。制冷剂的特性会随温度发生显著变化,从而放大热力学效应的影响。本研究基于大涡模拟(LES)方法和施内尔 - 绍尔(S - S)空化模型,研究了文丘里管(VT)中R134a制冷剂的瞬时空化流动特性。基于压力和温度的实验数据对S - S模型中的气泡数密度进行了改进。模拟结果表明,R134a制冷剂中存在两种空化云脱落模式。一种是由回流和涡旋离心力的共同作用引起的,另一种是由主流的中心射流和空化气泡溃灭产生的反向射流产生的。此外,制冷剂的热力学效应为空化现象施加了一定的抑制作用,揭示了制冷剂空化界面不稳定的原因以及空化云的脱落特性。研究了空化区域内局部声速、流速和热传导率之间的关系,揭示了在强烈空化区域温度变化相对于压力变化存在时间滞后现象。本研究深入探讨了复杂的空化动力学,特别是在R134a制冷剂系统中,并为准确预测和管理各种工业应用中的空化现象提供了一种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c46/11729677/a65dddf3b1af/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验