Suppr超能文献

CryoSamba:用于冷冻电子断层扫描数据的自监督深度体去噪

CryoSamba: Self-supervised deep volumetric denoising for cryo-electron tomography data.

作者信息

Costa-Filho Jose Inacio, Theveny Liam, de Sautu Marilina, Kirchhausen Tom

机构信息

Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Ave, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA.

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave, Boston, MA 02115, USA.

出版信息

J Struct Biol. 2025 Mar;217(1):108163. doi: 10.1016/j.jsb.2024.108163. Epub 2024 Dec 20.

Abstract

Cryogenic electron tomography (cryo-ET) has rapidly advanced as a high-resolution imaging tool for visualizing subcellular structures in 3D with molecular detail. Direct image inspection remains challenging due to inherent low signal-to-noise ratios (SNR). We introduce CryoSamba, a self-supervised deep learning-based model designed for denoising cryo-ET images. CryoSamba enhances single consecutive 2D planes in tomograms by averaging motion-compensated nearby planes through deep learning interpolation, effectively mimicking increased exposure. This approach amplifies coherent signals and reduces high-frequency noise, substantially improving tomogram contrast and SNR. CryoSamba operates on 3D volumes without needing pre-recorded images, synthetic data, labels or annotations, noise models, or paired volumes. CryoSamba suppresses high-frequency information less aggressively than do existing cryo-ET denoising methods, while retaining real information, as shown both by visual inspection and by Fourier Shell Correlation (FSC) analysis of icosahedrally symmetric virus particles. Thus, CryoSamba enhances the analytical pipeline for direct 3D tomogram visual interpretation.

摘要

低温电子断层扫描(cryo-ET)作为一种高分辨率成像工具迅速发展,能够以分子细节可视化三维亚细胞结构。由于固有的低信噪比(SNR),直接图像检查仍然具有挑战性。我们引入了CryoSamba,这是一种基于自监督深度学习的模型,旨在对低温电子断层扫描图像进行去噪。CryoSamba通过深度学习插值对运动补偿后的相邻平面进行平均,增强断层扫描图中单个连续的二维平面,有效地模拟增加的曝光。这种方法放大了相干信号并降低了高频噪声,显著提高了断层扫描图的对比度和信噪比。CryoSamba在三维体积上运行,无需预先记录的图像、合成数据、标签或注释、噪声模型或配对体积。如通过对二十面体对称病毒颗粒的目视检查和傅里叶壳层相关(FSC)分析所示,CryoSamba比现有的低温电子断层扫描去噪方法更不激进地抑制高频信息,同时保留真实信息。因此,CryoSamba增强了直接三维断层扫描图视觉解释的分析流程。

相似文献

1
CryoSamba: Self-supervised deep volumetric denoising for cryo-electron tomography data.
J Struct Biol. 2025 Mar;217(1):108163. doi: 10.1016/j.jsb.2024.108163. Epub 2024 Dec 20.
2
CryoSamba: self-supervised deep volumetric denoising for cryo-electron tomography data.
bioRxiv. 2024 Aug 3:2024.07.11.603117. doi: 10.1101/2024.07.11.603117.
3
Cryo-Electron Tomography and Subtomogram Averaging.
Methods Enzymol. 2016;579:329-67. doi: 10.1016/bs.mie.2016.04.014. Epub 2016 Jun 22.
4
It's noisy out there! A review of denoising techniques in cryo-electron tomography.
J Struct Biol. 2021 Dec;213(4):107804. doi: 10.1016/j.jsb.2021.107804. Epub 2021 Oct 31.
5
[Progress in filters for denoising cryo-electron microscopy images].
Beijing Da Xue Xue Bao Yi Xue Ban. 2021 Mar 3;53(2):425-433. doi: 10.19723/j.issn.1671-167X.2021.02.033.
6
Noise-Transfer2Clean: denoising cryo-EM images based on noise modeling and transfer.
Bioinformatics. 2022 Mar 28;38(7):2022-2029. doi: 10.1093/bioinformatics/btac052.
7
MemBrain: A deep learning-aided pipeline for detection of membrane proteins in Cryo-electron tomograms.
Comput Methods Programs Biomed. 2022 Sep;224:106990. doi: 10.1016/j.cmpb.2022.106990. Epub 2022 Jul 1.
8
A review of denoising methods in single-particle cryo-EM.
Micron. 2025 Jul;194:103817. doi: 10.1016/j.micron.2025.103817. Epub 2025 Mar 29.
9
Electron microscopy for imaging organelles in plants and algae.
Plant Physiol. 2022 Feb 4;188(2):713-725. doi: 10.1093/plphys/kiab449.
10
Improved Denoising of Cryo-Electron Microscopy Micrographs with Simulation-Aware Pretraining.
J Comput Biol. 2024 Jun;31(6):564-575. doi: 10.1089/cmb.2024.0513. Epub 2024 May 28.

引用本文的文献

1
In situ cryo-electron microscopy and tomography of cellular and organismal samples.
Curr Opin Struct Biol. 2025 Aug;93:103076. doi: 10.1016/j.sbi.2025.103076. Epub 2025 Jun 4.

本文引用的文献

1
Structure and topography of the synaptic V-ATPase-synaptophysin complex.
Nature. 2024 Jul;631(8022):899-904. doi: 10.1038/s41586-024-07610-x. Epub 2024 Jun 5.
2
Membraneless channels sieve cations in ammonia-oxidizing marine archaea.
Nature. 2024 Jun;630(8015):230-236. doi: 10.1038/s41586-024-07462-5. Epub 2024 May 29.
3
The rotavirus VP5*/VP8* conformational transition permeabilizes membranes to Ca2.
PLoS Pathog. 2024 Apr 4;20(4):e1011750. doi: 10.1371/journal.ppat.1011750. eCollection 2024 Apr.
4
A method for restoring signals and revealing individual macromolecule states in cryo-ET, REST.
Nat Commun. 2023 May 22;14(1):2937. doi: 10.1038/s41467-023-38539-w.
5
Parallel cryo electron tomography on in situ lamellae.
Nat Methods. 2023 Jan;20(1):131-138. doi: 10.1038/s41592-022-01690-1. Epub 2022 Dec 1.
6
Isotropic reconstruction for electron tomography with deep learning.
Nat Commun. 2022 Oct 29;13(1):6482. doi: 10.1038/s41467-022-33957-8.
7
AI-based structure prediction empowers integrative structural analysis of human nuclear pores.
Science. 2022 Jun 10;376(6598):eabm9506. doi: 10.1126/science.abm9506.
9
Structures from intact myofibrils reveal mechanism of thin filament regulation through nebulin.
Science. 2022 Feb 18;375(6582):eabn1934. doi: 10.1126/science.abn1934.
10
Noise-Transfer2Clean: denoising cryo-EM images based on noise modeling and transfer.
Bioinformatics. 2022 Mar 28;38(7):2022-2029. doi: 10.1093/bioinformatics/btac052.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验